Building a Distributed Column Store for Production Observability

Building a Distributed Column Store for Production
Observability

Please meet Retriever

Please meet Retriever
Distributed column store
Analytic query engine

Schemaless data model

Please meet Retriever

Distributed column store
Analytic query engine

Schemaless data model

Let's back up a second...

wat

'mal
—

record scratch

freeze frame

yup thats me. youre probably wondering how
I ended up in this situation

Retriever is a domain specific data store

help? contents?

What is Honeycomb?

Debugger for production

Help engineers understand and troubleshoot distributed
systems

In between metrics and log aggregation

How Honeycomb works

Your systems send us events

» aka structured logs

« aka JSON blobs

{
"endpoint”: 3
"hostname": 5
"response_time ms": 435,
"mysql_latency ms": 182,
"status": 200,
"user_id": 42

How Honeycomb works

We store them all

Timestamp endpoint hostname response_time_ms

15:10:43. " "app6”
15:18:45.456 "/account/update” "app12"
15:18:45.68° " /dashboard” "app32”
15:18:46.974 " "app16"

15:18:48.668 f "appB”

How Honeycomb works

You query the events

BREAK DOWN CALCULATE PER GROUP
endpoint AVG(response_time_ms)
HEATMAP(mysql_latency_ms)

How Honeycomb works

We turn your queries into pretty graphs

Honeycomb - example

I COUNT(*) WHERE status_code »>=

Honeycomb - example

I COUNT(*) WHERE status_code »>=

Hey, what's that error spike?

Maybe it's just one availability zone?

Honeycomb - example

I COUNT(*) WHERE status_code »>= GROUP BY region

45 03PM 0315 0330 0345 D4PM 0415 0430 0445 OSPM

Honeycomb - example

I COUNT(*) WHERE status_code »>= GROUP BY region

Across all availability zones...

Let's dig deeper %

45 03PM 0315 0330 0345 D4PM 0415 0430 0445 OSPM

Honeycomb - example

I SELECT * WHERE status_code >=

status_code hostname build_id

“500" “app6”
"58@” Jlappg n
”586” Happ5ll

Irsag” ”app‘l n

“500" “app6” “51"

"58@” Jlapp1 n [51 [
[589” appg n i'.l‘5.-| L1

;r5ggu ﬂ'5-'| L

Honeycomb - example

I COUNT(*) WHERE status_code »>= GROUP BY build_id

Looks like the spike came from the new build

How widely was the bad build deployed?

Honeycomb - example

I COUNT DISTINCT(hostname) GROUP BY build_id

Rolled out to 20% of the fleet

Then got rolled back

Honeycomb - example

Other questions you might ask:
Which customers were affected by this error?

Which customers see the most errors?

Which microservice was causing the error?

Our requirements

Store lots of events

Query them fast

help? contents?

Our requirements

SQL-like queries
BREAK DOWN and FILTER

» on any property of the data

» no fixed schema or predefined indices

High cardinality

Our requirements

Queries returning raw event data
... and returning time series

Operationally interesting calculations

» percentiles, histograms

« COUNT_DISTINCT

Fastl

Our requirements

Maintain and operate with a startup budget :)
Simplel

» Not a general purpose database

» Constrained access patterns

» No updates

» No joins, transactions, ACID

Where we're going
Architecture Overview
Column-oriented storage
Distributed queries

Operations

Where we're going
Architecture Overview
Column-oriented storage
Distributed queries

Operations

Scuba

Scuba: Diving into Data at Facebook Built to solve this problem at Facebook

Lior Abraham John Allen Qleksandr Barykin DiStribUted Event Store

Vinayak Borkar Bhuwan Chopra Ciprian Gerea
Daniel Merl Josh Melzler David Reiss
Subbu Subramanian Janet L. Wiener Okay Zed
Facebook, Inc. Menlo Park, CA

Scuba

Ingest events at scale

Store them all

Distribute events across many nodes

Fast queries by fanning out to multiple nodes

Store everything in RAM for even faster queries

Retriever at a glance

Distributed event store

Inspired by Facebook's Scuba

Retriever at a glance

Storage on disk

e Scuba uses RAM - $$%
e SSDs are fast

Column-oriented storage
Leverage filesystem features

Uses Kafka for ingest

» And for nice operational properties

Architecture - write path

Kafka Kafka

Retriever) Retriever .
Retriever Rektriever

help? contents?

Architecture - read path

help? contents?

Where we're going
Architecture Overview “2
Column-oriented storage
Distributed queries

Operations

Data model - datasets

Customers have one or more datasets
» analogous to tables
Datasets are partitioned

» each dataset is assigned to a number of partitions

» typically 3, up to 39

Dataset partitions contain events

Data model - events

{
"path": 5
"response_time": 142.2,
"status": 200,

}

{
"path”: 3
"response_time": 23,
"status": 400,
"error":

Data model - events

index timestamp path response_time status error message

0 45080 /foo 142.2 200

1 45085 [foo 23 400 Bad request

2 45087 /bar 657 200

3 45107 /foo 105 200

4 45302 Ground control to Major Tom

No (fixed) schema

» Arbitrary number of fields - e.g. hundreds
» All fields are nullable

Data model - events

index timestamp path response_time status error message

0 45080 /foo 142.2 200

1 45085 [foo 23 400 Bad request

2 45087 /bar 657 200

3 45107 /foo 105 200

4 45302 Ground control to Major Tom

Index is unique

» assigned on ingest

Timestamped

Data model - events

index timestamp path response_time status error message

0 45080 /foo 142.2 200

1 45085 [foo 23 400 Bad request

2 45087 /bar 657 200

3 45107 /foo 105 200

4 45302 Ground control to Major Tom

How to store events?
» Files on disk are just streams of bytes

« Row oriented?

« Column oriented?

Row oriented storage

path response_time status error

ffoo 1422 200

store all fields for a given record together

record 0
/foo 142.2 200

Row oriented storage

path response_time status error
ffoo 1422 200
ffoo 23 400 Bad request

store all fields for a given record together

record 0 record 1
ffoo 142.2 200 /foo 23 400 Bad request

Row oriented storage

path response_time status error

ffoo 142.2 200
ffoo 23 400 Bad request
/bar 657 200

store all fields for a given record together

record 0 record 1 record 2

ffoo 142.2 200 /foo 23 400 Bad request /bar 657 200

Column oriented storage

index timestamp path response_time status error

0 45080 [foo 1422 200

path.string

record 0

0 /foo

Column oriented storage

index timestamp path response_time status error

0 45080 [foo 142.2 200

1 45085 [foo 23 400 Bad request
path.string

record 0 record 1

0 [foo 1 /foo

Column oriented storage

index timestamp path response_time status error

0] 45080 [foo 142.2 200
1 45085 [foo 23 400 Bad request
2 45087 /bar 657 200
path.string
record 0 record 1 record 2

0 [foo 1 /foo 2 /bar

Column oriented storage

index timestamp path response_time status error

0 45080 [foo 1422 200

response_time.float

record 0

0 1422

Column oriented storage

index timestamp path response_time status error
0 45080 [foo 142.2 200
1 45085 [foo 23 400 Bad request

response_time.float

record 0 record 1

0 142.2 1 23

Column oriented storage

index timestamp path response_time status error

0 45080 [foo 1422 200
1 45085 [foo 23 400 Bad request
2 45087 /bar 657 200

response_time.float

record 0 record 1 record 2

0 142.2 1 23 2 657

Column oriented storage

index timestamp path response_time status error

0 45080 [foo 1422 200

error.string

Don't write anything until we have a valuel

Column oriented storage

index timestamp path response_time status error
0 45080 [foo 142.2 200
1 45085 [foo 23 400 Bad request

error.string

record 1

1 Bad request

Column oriented storage

index timestamp path response_time status error

0 45080 [foo 1422 200
1 45085 [foo 23 400 Bad request
2 45087 /bar 657 200

error.string

record 1

1 Bad request

Storage format - timestamp column

index timestamp path response_time status error

0 45080 [foo 1422 200
1 45085 [foo 23 400 Bad request
2 45087 /bar 657 200

Special "timestamp” column always present

record 0 record 1 record 2 record 3...

0 45808 1 45085 2 45087 ...

Tells us what index values exist

Let us filter by timestamp

Storage format - reading

How do we read column-oriented data?

Storage format - reading

Find out what columns exist

Storage format - reading

Find out what columns exist

Columns are just files in a directory

» just list the directory contents

Storage format - reading

Find out what columns exist

Columns are just files in a directory

» just list the directory contents

$ 1s

path.string
response_time.float
status.int
error.string

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"

open the column files we need
» index (from timestamp column)

» status (for filter)

» response_time

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
open the column files we need

iIndex

*

status.int

*

response_time.float

*

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
read an index
index
0 *
status.int

*

response_time.float

*

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
read from status file until we hit index O

index
0 *
status.int
0 200 *

response_time.float

*

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
status == 200!

index
0 *
status.int
0 200 *

response_time.float

*

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
read from response_time file until we hit index O

index
0 *
status.int
0 200 *

response_time.float

01422 *

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
collect response_time

index

0 *
status.int

0 200 *
response_time.float

01422 *

response_times: [142.2]

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
read an index

index

01~
status.int

0 200 *
response_time.float

01422 *

response_times: [142.2]

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
read from status file until we hit index 1

index

01~
status.int

0 200 1 400 *
response_time.float

01422 *

response_times: [142.2]

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
status # 200, skip this eventl

index

01~
status.int

0 200 1 400 *
response_time.float

01422 *

response_times: [142.2]

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
read an index

index

B
status.int

0 200 1 400 *
response_time.float

01422 *

response_times: [142.2]

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
read from status file until we hit index 2

index

B
status.int

0 200 1 400 2 200 *
response_time.float

01422 *

response_times: [142.2]

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
status == 200!

index

B
status.int

0 200 1 400 2 200 *
response_time.float

01422 *

response_times: [142.2]

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
read from response_time file until we hit index 2

index

B
status.int

0 200 1 400 2 200 *
response_time.float

01422 123 *

response_times: [142.2]

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
read from response_time file until we hit index 2

index

B
status.int

0 200 1 400 2 200 *
response_time.float

01422 1 23 2 657 *

response_times: [142.2]

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
collect response_time

index

B
status.int

0 200 1 400 2 200 *
response_time.float

01422 1 23 2 657 *

response_times: [142.2, 657]

Storage format - reading

e.g. "AVG(response_time) WHERE status = 200"
etc

index

B
status.int

0 200 1 400 2 200 *
response_time.float

01422 1 23 2 657 *

response_times: [142.2, 657]

Storage format - reading

ONLY VALUES IN BOLD GET READ

index path response_time status error

0 /foo 142.2 200
1 [ffoo 23 400 Bad request
p /bar 657 200

e.g. "AVG(response_time) WHERE status = 200"

Only read what you need!

« didn't touch other columns

Dynamic sampling

index path response time status error

0 ffoo 142.2 200
1 [ffoo 23 400 Bad request
2 /bar 657 200

Not all events are equally interesting
Most fast, successful responses look the same

And they happen a lot more often

... hopefully

Dynamic sampling

index sample rate path response_time status error

0 100 /foo 142.2 200
1 1 /foo 23 400 Bad request
2 20 /bar 657 200

Sample the events you send us

But sample dynamically

Tell us: "this event represents 100 just like it"

Dynamic sampling

index sample rate path response_time status error

0 100 /foo 142.2 200
1 1 /foo 23 400 Bad request
2 20 /bar 657 200

Knowing sample rate, we can calculate on sampled data

e.g. COUNT per status

200: 100 + 20 =120

400: 1 =1

Where we're going
Architecture Overview
Column-oriented storage
Distributed queries

Operations

Distributed queries

Client issues a query to a retriever root node

Root retriever forwards the query to retrievers on

other partitions
‘ Retriever Retriever \ _
I e — » All scan rows in parallel

» All perform local calculations

» All return calculations to root node

Root retriever merges results and returns to client

Distributed reads - calculations

Data is partitioned across nodes

S0 each node can only do part of the calculation

Need to be careful about combining results

Distributed reads - calculations

Data is partitioned across nodes
S0 each node can only do part of the calculation

Need to be careful about combining results

AVG(1, 2, 3, 3)
AVG(AVG(1, 2, 3), AVG(3))

Distributed reads - calculations

Data is partitioned across nodes
S0 each node can only do part of the calculation

Need to be careful about combining results

AVG(1, 2, 3, 3)
AVG(AVG(1, 2, 3), AVG(3))

Send back partial results that can be combined

L

SuM(1, 2, 3, 3) q
(sum(1, 2, 3) +suM(3)) / (3 + 1)

Distributed reads - calculations

Data is partitioned across nodes

S0 each node can only do part of the calculation

Other partial results that can be combined:

Distributed reads - calculations

Data is partitioned across nodes
S0 each node can only do part of the calculation

Other partial results that can be combined:

Groups

Distributed reads - calculations

Data is partitioned across nodes
S0 each node can only do part of the calculation

Other partial results that can be combined:

Groups

l { : 235, : 454}

COUNT DISTINCT
» HyperLoglLog

Distributed reads - calculations

Data is partitioned across nodes
S0 each node can only do part of the calculation
Other partial results that can be combined:

Groups

l { : 235, : 454}

COUNT DISTINCT
» HyperLoglLog

Percentiles

» [-digest

Distributed reads - fanout

Root node merges the results

May still have to do a lot of work

* e.g. merging large numbers of groups

Don't want to overwhelm the root

Distributed reads - fanout

Retriever

OO O

]

help? contents?

Where we're going

Architecture Overview

Column-oriented storage o M G ’
@

Distributed queries

Operations D E Vop S

Detour - Kafka

Retriever relies on Kafka for ingesting events

Gives us:

Write distribution

Replication

Faulf tolerance

Disaster recovery

kafka

Detour - Kafka

Kafka is a distributed log

» ~ message queue

Publish messages to topics

« ~ fables

Topics are partitioned

» horizontal scaling

Messages within a partition are totally ordered

kafka

Detour - Kafka

Kafka actually stores messages on disk
» whether or not anyone is consuming them

» unlike most message queues
Allows multiple consumers

» aka pub-sub

Allows replaying

kafka

Ingestion

Clients publish events to a Kafka topic
» Kafka topic is partitioned
+ Datasets are assigned to partitions
Client chooses which partition to write to
» Client checks partition assignment for dataset
» Picks a partition (at random)
Retriever on that partition consumes events from Kafka

« and writes to disk

All writes replicated to two nodes

» Each partition of the Kafka topic has two retrievers consuming it

Quota management
S %%1: T

Each customer gets a storage quota

Want to age out old data past quota

Quota management

Split events into segments

Segments are just directories on disk

Start a new segment when we've written enough events

Calculate space occupied by each segment
Just stat the files!

Background job periodically deletes oldest data

Just delete the directories!

Fault tolerance

What if retriever goes down?
» Crash, network outage...

» Deploy / planned maintenance

We have two replicas...

Fault tolerance

What if retriever goes down?
» Crash, network outage...

» Deploy / planned maintenance

We have two replicas...

But we don't want to miss events coming in

Failure recovery

Each retriever tracks Kafka offset

» Events are totally ordered in Kafka (per partition)

On boot, reconsume all events since last offset

Failure recovery

Periodic checkpoints
+ Store Kafka offset of last-written message

+ Store "index™ of last-written message

Determines where to reconsume from

Failure recovery

Periodic checkpoints
+ Store Kafka offset of last-written message

+ Store "index™ of last-written message

Determines where to reconsume from

Truncate written data to avoid duplicate writes

» events up to checkpoint index was committed

« anything after that is suspect

Bootstrapping new nodes

What if a node disappears completely?
Find an existing node on the same partition

Copy over the data

» just rsync the directory structure!

... then consume Kafka from last checkpoint

Operations - summary

Replication
» via Kafka
Fault tolerance
» via Kafka
Quota management

» via filesystem

Bootstrapping new nodes

* Via rsync

« and Karka

Retriever

Summary

Column-oriented storage is a cool trick

» only read what you need

Summary

Column-oriented storage is a cool trick

» only read what you need

Kafka solves distributed systems problems for you

« fault tolerance

» replication

Summary

Column-oriented storage is a cool trick

» only read what you need

Kafka solves distributed systems problems for you
» fault tolerance
» replication

Filesystems are actually pretty useful

» read caching

« atomic renames

» rsync!

Summary

Column-oriented storage is a cool trick

» only read what you need

Kafka solves distributed systems problems for you
» fault tolerance
» replication

Filesystems are actually pretty useful
» read caching

« atomic renames

» rsync!

Look for ways to make hard problems easy

Credits

» retriever - rkleine (Flickr)

» record scratch dog - breadgirl (Twitter)

» architecture - barnyz (Flickr)

» Scuba paper - Facebook (various authors)
» columns - bcymet (Flickr)

» reading - triviaqueen (Flickr)

» dam - nevilleslens (Flickr)

» rube goldberg machine - agrinberg (Flickr)

