BEESWAXE

Introducing the Bidder-as-a-Service

Applying Design To Solve Scaling
Problems and Evolve an Architecture

DatabEngConf, NYC Oct. 30, 2017

Mark Weiss

Senior Software Engineer
mark@beeswax.com
QINEILSVEES

What

1S

We Built a Better Bidder

About Beeswax

e Beeswax is a 3-year-old ad tech startup based in NYC

e Founded by three ex-Googlers, CEO has deep roots in ad tech
e 40 employees in NYC and London

Why we are Different

e Customers get the benefits of a custom bidder stack, without the
development and operating cost and risk

e Give customers access to all of their data

e Provide APIs for customers to customize bidding strategy, API-driven

e SaaS model and pricing, customers pay to use the platform

BEESWAXE

RTB: Real Time Bidding (AKA "Please Let Us Do This")

sor, T “@» sop
N A

- < Scale: 1M QPS
Publisher 200 ms Latency 99:20 ms
- Target campaigns
h N - Target user profiles
- Optimize for ROI
Step 4: \.\, step 3: - Customize
Show ad to user = N, Submit bid & ad markup

What is the Beeswax Data Platform?

Beeswax Data Platform

Bid Data

— v

W

Customer Raw Event Customer
Data Normalized Log Data
lr lr S lr .
Event Ingestion . . S3 . Redshift
Event Join,
Processing Normalize,
Aggregate
Impression, Click and Customer

other Event Data Reports

Beeswax Data Platform: Event Stream

Bid Data

." ."
Python Web App Customer Raw Event Customer
Input: HTTP/JSON Data Normalized Log Data
Output: Protobuf
%]|

[
Event Ingestion : S3 Redshift
: Event Join,
: Processing Normalize,
Aggregate
Kinesis 8878
Impression, Click and Customer

other Event Data Reports

Beeswax Data Platform: Event Processing

Bid Data

~——
Custom Java KCL App E

Input: Protobuf

&Y

Output: CSV Customer Raw Event Customer

AN Data Normalized Log Data
\
% ||
Event Ingestion S3 Redshift
Event Join,
Processing Normalize,
Aggregate
Impression, Click and Customer

other Event Data Reports

Beeswax Data Platform: Event Processing

Bid Data
." ."
Customer Raw Event Customer
Data Normalized Log Data

0
/
Event Ingestion o Redshift
Event /// Join,
Processing ol Normalize,
2 Aggregate

- AWS Data Pipeline

- AWS Redshift/SQL

- Custom Python libs

Impression, Click and - Python Activities Customer
other Event Data Reports

BEESWAXE

Event Join and Aggregation ("Everything Looks Good ...")

Bids

Impressions p p P Fact Table:
Impression Details

Clicks, Conversions

BEESWAXE

Event Join and Aggregation ("Everything Looks Good ...")

Bids

Impressions p p P Fact Table:
Impression Details

Clicks, Conversions

F 3
A

A

Other

Impression
Data

BEESWAXE

Pipeline Problems: Monolithic and Inflexible

Target Table

BEESWAXE

We were a lucky startup with a bunch of "good
problems to have" '

System Goals for Architectural Evolution

e Support separate pipelines writing to the same target tables
e Support any pipeline depending on the data from any other
e Centralize job-level state management and job control

BEESWAXE

System Goals for Architectural Evolution

e Support separate pipelines writing to the same target tables
e Support any pipeline depending on the data from any other
e Centralize job-level state management and job control

e Continue to use the existing platform technologies ... for now

BEESWAXE

BEESWAXE

Goals to Principles: Remove Contention

Goal Principle

Multiple asynchronous pipelines with
Nno write contention

Multiple pipelines land data in same
master fact table

BEESWAXE

Principles to Patterns: Remove Contention

Input Data
Set A

Input Data
Set A

Input Data
SetB

Input Data
SetB

Staging Table
A

Gather Data

Pipeline Job

Staging Table
B

Target Fact
Table

BEESWAXE

Goals to Principles: Job Composition and Job State

Goal
Any job can depend on any other job

Jobs always consume the most recent
source data available

Principle

BEESWAXE

Principles to Patterns: Job Composition and Job State

Scatter Job . Global Job State
Data Set Type A Staging Table A
version 1 Data Set Time 1
Type 1

BEESWAXE

Principles to Patterns: Job Composition and Job State

Scatter Job

Data Set Type A

Scatter Job

Data Set Type A

Staging Table A
Version 1

Global Job State

Data Set
Type A

Time 1

Staging Table A
Version 2

Data Set
Type A

Time 2

BEESWAXE

Principles to Patterns: Job Composition and Job State

Consumes most
recent data

Gather Data Job

Global Job State

Scatter Job

Staging Table A

Version 1 Data Set Time 1
Type A

Data Set Type A

Data Set Time 2
Type A

Scatter Job .
Data Set Type A Staging Table A Garbage
Version 2 Collection Job

DROPs less
recent data

BEESWAXE

Patterns to Design: Job Composition and Job State

(Data Set Type A,
timestamp 1,
processing_window)

Scatter Job A

Global Job (Iifthlt.er Dat;\
State Ipeline Jo

(Data Set Type A,

timestamp 1,
proecssing_window),

(Data Set Type B,
timestamp 2,
processing_window)

Scatter Job B (Data Set Type A,
timestamp 1,
processing_window)

BEESWAXE

BEESWAXE

Implementing the Design

RDS (MySQL)

Global Job State

Python API

Data Pipeline
Jobs

Data Pipeline
Jobs

Tables

e AWS Data
Pipeline

e Python

e Redshift SQL

Redshift DDL

BEESWAXE

Conclusions

e YOou can evolve data architecture without adopting new
technology

e Carefully chosen invariants define a design that can solve
present problems and supports future flexibility

e |[nvariants are system Goals

e |dentifying goals suggest Principles

e Patterns embody Principles

e Design applies patterns

BEESWAXE

BEESWAXE

Introducing the Bidder-as-a-Service

Questions?

Mark Weiss . We have a great team!

Senior Software Engineer

mark@beeswax.com We have lots of fun problems to solve!

@marksweiss We have LaCroix and Kind Bars!
We're hiring!

https:.//www.beeswax.com/careers/

https://www.beeswax.com/careers/

