

Introducing the Bidder-as-a-Service

Applying Design To Solve Scaling
Problems and Evolve an Architecture

DataEngConf, NYC Oct. 30, 2017

Mark Weiss
Senior Software Engineer
mark@beeswax.com
@marksweiss

What is Beeswax?

We Built a Better Bidder

About Beeswax
● Beeswax is a 3-year-old ad tech startup based in NYC
● Founded by three ex-Googlers, CEO has deep roots in ad tech
● 40 employees in NYC and London

Why we are Different
● Customers get the benefits of a custom bidder stack, without the

development and operating cost and risk
● Give customers access to all of their data
● Provide APIs for customers to customize bidding strategy, API-driven
● SaaS model and pricing, customers pay to use the platform

RTB: Real Time Bidding (AKA "Please Let Us Do This")

Publisher

Ad Exchange

Beeswax Bidder
Scale: 1M QPS
Latency_99 : 20 ms
- Target campaigns
- Target user profiles
- Optimize for ROI
- Customize

< 200 ms

Step 1:
Send ad request & userid

Step 2:
Broadcast bid request

Step 3:
Submit bid & ad markup

Step 4:
Show ad to user

Auction

What is the Beeswax Data Platform?

Beeswax Data Platform

Event Ingestion

Impression, Click and
other Event Data

Event
Processing

Customer Raw Event
Data

S3 Redshift

Bid Data

Join,
Normalize,
Aggregate

Customer
Normalized Log Data

Customer
Reports

Beeswax Data Platform: Event Stream

Event Ingestion

Impression, Click and
other Event Data

Event
Processing

Customer Raw Event
Data

S3 Redshift

Bid Data

Join,
Normalize,
Aggregate

Customer
Normalized Log Data

Customer
Reports

Python Web App
Input: HTTP/JSON
Output: Protobuf

Kinesis

Beeswax Data Platform: Event Processing

Event Ingestion

Impression, Click and
other Event Data

Event
Processing

Customer Raw Event
Data

S3 Redshift

Bid Data

Join,
Normalize,
Aggregate

Customer
Normalized Log Data

Customer
Reports

Custom Java KCL App
Input: Protobuf
Output: CSV

Beeswax Data Platform: Event Processing

Event Ingestion

Impression, Click and
other Event Data

Event
Processing

Customer Raw Event
Data

S3 Redshift

Bid Data

Join,
Normalize,
Aggregate

Customer
Normalized Log Data

Customer
Reports

- AWS Data Pipeline
- AWS Redshift/SQL
- Custom Python libs
- Python Activities

What Was the State of the System?

Event Join and Aggregation ("Everything Looks Good …")

Bids

Impressions

Clicks, Conversions

Honeycomb
Joining

and
Aggregation

Fact Table:
Impression Details

Event Join and Aggregation ("Everything Looks Good …")

Bids

Impressions

Clicks, Conversions

Honeycomb
Joining

and
Aggregation

Fact Table:
Impression Details

Other
Impression

Data

Pipeline Problems: Monolithic and Inflexible

Target Table

 Step 1 Step 2 Step 3

 Step 1 Step 2 Step 3

We were a lucky startup with a bunch of "good
problems to have"

System Goals for Architectural Evolution

● Support separate pipelines writing to the same target tables
● Support any pipeline depending on the data from any other
● Centralize job-level state management and job control

System Goals for Architectural Evolution

● Support separate pipelines writing to the same target tables
● Support any pipeline depending on the data from any other
● Centralize job-level state management and job control
● Continue to use the existing platform technologies … for now

From Goals to Principles to Patterns to Design

Goals to Principles: Remove Contention

Goal Principle
Multiple asynchronous pipelines with
no write contention

Jobs always write to new versioned
instances of target tables

Multiple pipelines land data in same
master fact table

One job per master target table reads
from multiple sources and writes into
the target table sequentially

Principles to Patterns: Remove Contention

 Data Pipeline Job
A Staging Table

A

Target Fact
Table

 Gather Data
Pipeline Job

 Input Data
Set A

 Input Data
Set A

 Data Pipeline Job
B Staging Table

B

 Input Data
Set B

 Input Data
Set B

Goals to Principles: Job Composition and Job State

Goal Principle
Any job can depend on any other job Jobs record completion of uniquely

identifiable, timestamped data sets
into one source of truth for all jobs

Jobs always consume the most recent
source data available

Jobs can query one source of truth to
discover the the most recent data sets
available upon which they depend

Principles to Patterns: Job Composition and Job State

Scatter Job

Data Set Type A
Time 1

Staging Table A
Version 1

Global Job State

Data Set
Type 1

Time 1

Principles to Patterns: Job Composition and Job State

Scatter Job

Data Set Type A
Time 1

Staging Table A
Version 1

Scatter Job

Data Set Type A
Time 2

Staging Table A
Version 2

Global Job State

Data Set
Type A

Time 1

Data Set
Type A

Time 2

Principles to Patterns: Job Composition and Job State

Scatter Job

Data Set Type A
Time 1

Staging Table A
Version 1

 Garbage
Collection Job

DROPs less
recent data

Scatter Job

Data Set Type A
Time 2

Staging Table A
Version 2

Global Job State

Data Set
Type A

Time 1

Data Set
Type A

Time 2

 Gather Data Job

Consumes most
recent data

Patterns to Design: Job Composition and Job State

 Gather Data
Pipeline Job

Global Job
State

(Data Set Type A,
timestamp 1,
processing_window) Scatter Job A

 Scatter Job B

(Data Set Type A,
timestamp 1,
proecssing_window),

(Data Set Type B,
timestamp 2,
processing_window)

(Data Set Type A,
timestamp 1,
processing_window)

Implementing the Design with What we Have on
Hand

Implementing the Design

 Data Pipeline
Jobs Tables

Global Job State

● AWS Data
Pipeline

● Python
● Redshift SQL

Redshift DDL

RDS (MySQL)

 Data Pipeline
JobsPython API

Conclusions

● You can evolve data architecture without adopting new
technology

● Carefully chosen invariants define a design that can solve
present problems and supports future flexibility

● Invariants are system Goals
● Identifying goals suggest Principles
● Patterns embody Principles
● Design applies patterns

Introducing the Bidder-as-a-Service

Questions?

Mark Weiss
Senior Software Engineer
mark@beeswax.com
@marksweiss

We have a great team!
We have lots of fun problems to solve!

We have LaCroix and Kind Bars!
We're hiring!

https://www.beeswax.com/careers/

https://www.beeswax.com/careers/

