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We Built a Better Bidder

About Beeswax

e Beeswax is a 3-year-old ad tech startup based in NYC

e Founded by three ex-Googlers, CEO has deep roots in ad tech
e 40 employees in NYC and London

Why we are Different

e Customers get the benefits of a custom bidder stack, without the
development and operating cost and risk

e Give customers access to all of their data

e Provide APIs for customers to customize bidding strategy, API-driven

e SaaS model and pricing, customers pay to use the platform
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RTB: Real Time Bidding (AKA "Please Let Us Do This")
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What is the Beeswax Data Platform?




Beeswax Data Platform

Bid Data

— v

W

Customer Raw Event Customer
Data Normalized Log Data
lr lr S lr .
Event Ingestion . . S3 . Redshift
Event Join,
Processing Normalize,
Aggregate
Impression, Click and Customer

other Event Data Reports



Beeswax Data Platform: Event Stream
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Beeswax Data Platform: Event Processing
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Beeswax Data Platform: Event Processing
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Event Join and Aggregation ("Everything Looks Good ...")
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Pipeline Problems: Monolithic and Inflexible

Target Table
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We were a lucky startup with a bunch of "good
problems to have" '




System Goals for Architectural Evolution

e Support separate pipelines writing to the same target tables
e Support any pipeline depending on the data from any other
e Centralize job-level state management and job control
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System Goals for Architectural Evolution

e Support separate pipelines writing to the same target tables
e Support any pipeline depending on the data from any other
e Centralize job-level state management and job control

e Continue to use the existing platform technologies ... for now
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Goals to Principles: Remove Contention

Goal Principle

Multiple asynchronous pipelines with
Nno write contention

Multiple pipelines land data in same
master fact table
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Principles to Patterns: Remove Contention
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Goals to Principles: Job Composition and Job State

Goal
Any job can depend on any other job

Jobs always consume the most recent
source data available

Principle
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Principles to Patterns: Job Composition and Job State

Scatter Job . Global Job State
Data Set Type A Staging Table A
version 1 Data Set Time 1
Type 1
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Principles to Patterns: Job Composition and Job State

Scatter Job

Data Set Type A
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Principles to Patterns: Job Composition and Job State

Consumes most
recent data

Gather Data Job

Global Job State

Scatter Job

Staging Table A

Version 1 Data Set Time 1
Type A

Data Set Type A

Data Set Time 2
Type A

Scatter Job .
Data Set Type A Staging Table A Garbage
Version 2 Collection Job

DROPs less
recent data

BEESWAXE



Patterns to Design: Job Composition and Job State

(Data Set Type A,
timestamp 1,
processing_window)

Scatter Job A

Global Job (Iifthlt.er Dat;\
State Ipeline Jo

(Data Set Type A,

timestamp 1,
proecssing_window),

(Data Set Type B,
timestamp 2,
processing_window)

Scatter Job B (Data Set Type A,
timestamp 1,
processing_window)

BEESWAXE



BEESWAXE



Implementing the Design
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Conclusions

e YOou can evolve data architecture without adopting new
technology

e Carefully chosen invariants define a design that can solve
present problems and supports future flexibility

e |[nvariants are system Goals

e |dentifying goals suggest Principles

e Patterns embody Principles

e Design applies patterns
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Questions?

Mark Weiss . We have a great team!

Senior Software Engineer

mark@beeswax.com We have lots of fun problems to solve!

@marksweiss We have LaCroix and Kind Bars!
We're hiring!

https:.//www.beeswax.com/careers/
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