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OR:

When initially promising seeming supervised learning models
don't quite make it to production, or fail shortly after being
productionized, why?

How can we avoid these failure modes?
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Media Coverage of Al/ML Failure

The Fﬁture Of Crime-Fighting Or The Future Of
Racial Profiling?: Inside The Effects Of
Predictive Policing

The idea of PredPol is that if officers focus their attention on an area that's
slightly more likely to see a crime committed than other places, they will reduce
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Microsoft’s attempt at engaging millenni h artificial intelligence
backfired hours into its launch, with waggish Twitter users teaching i
how to be racist.

The company launched a verified Twitter account for “Tay” - billed as its “AI fam
from the internet that’s got zero chill” - early on Wednesday.
esla Model S with the Autopilot system activated was involved in a fatal crash, the first known fatality in a Tesla where Autopilot
was active. The company revealed the crash posted today and says it informed the National Highway Transportation
Safety Administration (NHTSA) of the incident, which is now investigating.
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A Framework

1. A survey of some less discussed « Class Imbalance
failure modes « Time based effects

2. Techniques for detecting and/or « latent time dependence
solving them « concept drift

* Non-stationarity
« Structural breaks
* Business applicability
« Dataset availability,
 Look-ahead bias
» Metrics and loss functions
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Predata Data

Our data exhibits all sorts of non- \ |
stationarity, is extreme value distributed, | ‘,
have many structural breaks. Our prediction H y‘
targets are heavily imbalanced and exhibit | \“\.\J
multiple modes of concept drift. I
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Things Not Covered

« Conventional overfitting
* Interpretability
* Most commonly raised obstacle, often used to help with model selection
« Lack of data
* In some cases this is solvable with money or time
» Also see Claudia's talk titled "All The Data and Still Not Enough”
« Dirty, noisy, missing, or mislabeled data
» Refer to Sanjay’s talk yesterday
« Problems without ‘straightforward’ solutions (i.e. censored data, unsupervised learning
and RL)
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Class Imbalance

» Classical examples: cancer  MSE / Accuracy derived metrics
detection, credit card fraud don't work well
« ROC, Cohen's Kappa, macro-
* Predata examples: terrorist averaged recall better, but not the
incidents, large scale civil protests end all
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Class Imbalance (cont’d)

—h

Oversampling, undersampling
Adjust class / sample weights
Frame as anomaly detection
problem (only in two class case)

4. SMOTE and derivatives - ADASYN
and other variants

e

The first step is to ignore the majority
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https://svds.com/learning-imbalanced-classes/
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Latent Time Dependence

« Don't JUST use K-Fold cross validation
« Also use a set of time oriented test/train splits

« Some time series splits are ‘lucky’ or ‘easy,’” especially in the presence of
concept drift and class imbalance

Plot performance metrics via a sliding window over time in holdout

https://svds.com/learning-imbalanced-classes/
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Non-stationarity

Constant Level

« Seasonality / weak stationarity
« seasonal adjustment
» feature engineering
« Trend stationary
« Growth (exponential or additive)
« KPSS test
 Model the trend, remove it
* Rolling z-score
« Difference stationary
 ADF unit root test
« Use differencing to remove
* Beware fractional integration -
long memory (GPH test)

Linear Trend
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Structural Breaks

* Unexpected shift, often caused by exogenous events
« Change detection is a very active area of research
« Chow test for single change-point
» Multiple breaks require tests like sup-Wald/LM/MZ
 These make assumptions like homoskedasticity
« Mitigate by using just recent data
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https://en.wikipedia.org/wiki/Structural_break#/media/
File:Chow_test_example.png

https://www.stata.com/features/overview/structural-breaks/
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Concept Drift

Changing relationship between independent and dependent variables
OR

Changing class balance / Mutating nature of classes

* Active and passive solutions:
» Active rely on change detection tests / online change detection
« Passive solutions continuously update the model
« There is active research in ensembling based on time based performance

* Predata is particularly interested in resurfacing old successful classifiers
after some transient change / exogenous shock
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Other Time Series Effects

« \Volatility clustering
» Poisson/Cox/Hawkes processes

 Random walks / Wiener processes

Wiener Process - 1000 Paths

https://github.com/matthewfieger/wiener_process https://stackoverflow.com/questions/24785518/how-to-
compute-residuals-of-a-point-process-in-python
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Look-Ahead Bias and Time Delays

« Make sure that you have guarantees (or mitigation strategies) if you have data
availability failures
 Ensemble models with different delays
« Surface data outages to data consumers
» Feature engineering done now might not have been intuitive in the past. If there is
concept drift, how can we be sure that performance will continue.
» Look at performance over time in live test
» Automated feature engineering / feature selection
» Use judgement; use features that seem like they would be stable across time (little
concept drift) or features that would likely be discovered in real time
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Loss Functions and Metrics

 How does you business value Type I/l errors?
« Time series prediction specific:
» Is an early prediction useful?
« Should a late prediction be penalized fully?
 How do we weight samples based on their importance?
 How do you translate business concerns to the optimization / modeling layer
« Writing custom loss functions
 AutoGrad, PGM like Edward
« Genetic algorithms
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Questions?

John Urbanik

@johnurbanik
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