
S C A L I N G A D A T A P I P E L I N E :
M Y S T E R Y T O M A S T E R Y

Dan Goldin
@dangoldin

AGENDA
Introduction

AdTech and Data

The Evolution

Current State

Lessons Learned

Q&A

INTRODUCTION

S IMP L E
Render brand’s assets to
match the unique look and
feel of the publisher

SCA L AB L E
Bringing scale to high
performing consumer friendly
formats

EFFECT IVE
Integrations into the world’s
largest DSPs – Google, The
Trade Desk, Turn, MediaMath,
AppNexus and more

DATA & ADTECH

High volume across many dimensions
that needs to be handled in real time

VOLUME

REAL T IME BIDDING AUCTION T IMELINE

Augment with user
data (10

milliseconds)

2

Receive an ad
request

1 5

Apply business
rules to determine

winner
(10 milliseconds0

3

Submit bid
requests to DSPS
(20 milliseconds)

4

Get bid
responses
from the

DSPs
(100

milliseconds)

6

Collect
engagement

events

TRIPLEL IFT TODAY

25K+
Auctions/sec

~300
Bids/auction

2B+
Auctions/day

~21B
Events/day

~600B
Bids/day

DIMENSIONS

Browser, Device, OS,
Geography, Domain, Time

Creative, Format, Brand Buyer, Bid Amount

Price

Click, Duration, Render, View

W I N S

B I D R E S P O N S E S

A D R E Q U E S T

E N G A G E M E N T S

LOTS OF D IMENSIONS

Ad Request

AUCT ION EV ENTS

AUCTION Bid Responses

Auction Bid Request

Win Events

Render

Click

Viewability

Mouseover

Video

Server-side
Events

Client-side
Engagement Events

More and more and more

THE EVOLUTION

SO W HAT’S A DATA P IPEL INE?

Events

Data processing

Usable data

SO W HAT’S A DATA P IPEL INE?

Events

Aggregation

Storage

APIs and UIs

Implementation highlights
- Variable sample rate
- Keep a running sum in memory and

write to MySQL every few minutes

Challenges
- Constant open connection to DB
- Tables became large and unwieldy
- Difficult to slice and dice sampled

data
- Easy to lose data

Events (Client Side)

Node aggs

MySQL

API / UI

v1: Sad but true

v2: Kafka, Secor, and Redshift

Implementation highlights
- Collect every event in Kafka
- Upload to S3 and load into Redshift
- All jobs done through Redshift queries
- Storm to handle real time pacing

Challenges
- Dependencies tough to manage
- Couldn’t do everything via SQL queries
- Redshift became expensive

Kafka
(Custom batching)

Custom Secor
S3

Agg Queries
(Java / SQL)

API / UI

RabbitMQ

Redshift

Custom
Scheduling

MySQL

Events (Client + Server Side)

Storm

Implementation highlights
- Kafka 0.10
- Failed attempt at Spark Streaming
- Spark was a big improvement

- Cheaper & more scalable than Redshift
- More advanced query logic

- Druid also helped
- Trivial to scale to 100s of metrics and

dimensions
- Replaced a dozen tables with a single cube
- Improved query times

Challenges
- More tech to maintain
- Scheduling still a challenge
- More complex development process

Kafka 0.10

Vanilla SecorS3
Logs

Apache Spark

API / UI

Databricks Cron

S3
Aggs

Druid

BI Tools

Events (Client + Server Side)

v3: Hello Spark; Hello Druid

Kafka

VoltDB

Druid

BI Tools

Kafka

Batch
System

API / UI

Events (Client + Server Side)

v4: Lambda, the ultimate?

Implementation highlights
- Introduced VoltDB
- Feeds back into our Druid cluster
- Delays in batch jobs masked

Challenges
- Even more tech to maintain
- Real time can get real expensive

CURRENT STATE

Secor

Spark Pipeline
Spark/Scala

Looker

S3
Logs

S3
Data

Pipeline
Manager

Reporting
API & UI BI Tools

MySQL

Events

Apache Kafka
Protobuf Events

Redshift

Druid
Databricks

VoltDB

Apache Kafka

Apache Kafka

Storm

LESSONS LEARNED

- The seemingly simple stuff is difficult
- Dependencies
- Scheduling

- Stop hacking open source libraries: Vanilla is an uninspired yet
classic and delicious flavor
- Secor
- Kafka

- SQL really is everywhere

- Changing code is much easier than changing data

- The big data ecosystem is huge with tons of tools

Q & A

T H A N K Y O U

