Fasy, Scalable, Fault-tolerant
Stream Processing with
Structured Streaming

Burak Yavuz

DataEngConf NYC

October 315t 2017 S databriCkST

€databricks

e Software Engineer — Databricks
- “We make your streams come true”
e Apache Spark Committer

e MS in Management Science & Engineering -
Stanford University

e BS in Mechanical Engineering - Bogazici
University, Istanbul

About Databricks

TEAM
Started Spark project (now Apache Spark) at UC Berkeley in 2009

MISSION
Making Big Data Simple

PRODUCT
Unified Analytics Platform

@ databricks

building robust
stream processing
apps is hard

@ databric

ks

Complexities in stream processing

COMPLEX DATA COMPLEX WORKLOADS COMPLEX SYSTEMS
Diverse data formats Combining streaming with Diverse storage systems

(json, avro, binary, ...) interactive queries (Kafka, S3, Kinesis, RDBMS, ...)

Data can be dirty, Machine learning System failures

late, out-of-order

@ databricks

Structured Streaming

stream processing on Spark SQL engine
fast, scalable, fault-tolerant

rich, unified, high level APIs
deal with complex data and complex workloads

rich ecosystem of data sources
integrate with many storage systems

#databricks

you
should not have to
reason about streaming

@ databricks

you
should write simple queries

&
Spark

should continuously update the answer

@ databricks

Anatomy of a Streaming Query

Streaming word count

@ databricks

Anatomy of a Streaming Query

spark.readStream
.format("kafka") } Source
.option("subscribe", "input")
.load() « Specify one or more locations

to read data from

* Builtin support for
Files/Kafka/Socket,
pluggable.

e Caninclude multiple sources
of different types using
union()

#databricks

Anatomy of a Streaming Query

spark.readStream

.format("kafka") Transformation
.option("subscribe", "input")]

.1oad() * Using DataFrames,
.groupBy('value.cast("string") as ‘'key)

agg(count(**") as ‘value) :|- Datasets and/or SQL.

» Catalyst figures out how to
execute the transformation
incrementally.

* Internal processing always
exactly-once.

@ databricks

Spark automatically streamifies!

input = spark.readStream Read from Kafka t:| 1 t:|2 t:l3 >
format Kafka Source ' ']
option
Toad S E))
Project .
result = input L device, signal | Optimized - -
select | i Operator 9 g 8%
where s - 2 codegen, off- g o S o 02
Filter heap, etc. o2 o2 = qg.)
result.writeStream signal > 15 ’ o GC’ a3 g Q=
format
start Write to Kafka
Kafka Sink
DataFrames, Logical Optimized
Datasets, SQL Plan Physical Plan

Spark SQL converts batch-like query to a series of incremental
execution plans operating on new batches of data

@ databricks

Anatomy of a Streaming Query

spark.readStream

.format("kafka") Sink

.option("subscribe", "input")

.load() * Acceptsthe output of each
.groupBy('value.cast("string") as ‘'key) batch

.agg(count("*") as 'value))

.writeStream .

format ("kafka") } When supported sinks are
.option("topic", "output™) transactional and exactly

once (Files).

e Use foreach to execute
arbitrary code.

@ databricks

Anatomy of a Streaming Query

spark.readStream
.format("kafka")
.option("subscribe", "input")
.load()
.groupBy('value.cast("string") as ‘'key)
.agg(count("*") as 'value)
.writeStream
.format("kafka")
.option("topic", "output")

- What's output

Complete - Output the whole answer
every time

Update - Output changed rows

Append - Output new rows only

— When to output

Specified as a time, eventually
supports data size

No trigger means as fast as possible

@ databricks

Anatomy of a Streaming Query

spark.readStream
.format("kafka")
.option("subscribe", "input")
.load()
.groupBy('value.cast("string") as ‘'key)
.agg(count("*") as 'value)
.writeStream
.format("kafka")
.option("topic", "output")

.option("checkpointLocation", "..")
.start()

Checkpoint

* Tracks the progress of a
query in persistent storage

e Can be used to restart the
query if there is a failure.

@ databricks

Fault-tolerance with Checkpointing

- tracks progress
(offsets) of consuming data from
the source and intermediate state.

Offsets and metadata saved as JSON

Can resume after changing your
streaming transformations

@ databricks

~y— Complex Streaming ETL

@ databricks

Traditional ETL

10101010)seconds> file “ > hours >
dump

Raw, dirty, un/semi-structured is data dumped as files

table

Periodic jobs run every few hours to convert raw data
to structured data ready for further analytics

@& databricks

Traditional ETL

10101010)seconds> file “ > hours >
dump

Hours of delay before taking decisions on latest data

table

Unacceptable when time is of essence
[intrusion detection, anomaly detection, etc.]

@ databricks

Streaming ETL w/ Structured Streaming

—

)

table

10101010 > I\Sﬂjﬁ

Structured Streaming enables raw data to be available

as structured data as soon as possible

#databyicks

Streaming ETL w/ Structured Streaming

Example

Json data being received in Kafka
Parse nested json and flatten it
Store in structured Parquet table

Get end-to-end failure guarantees

val rawData = spark.readStream
.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()

val parsedData = rawData
.selectExpr("cast (value as string) as json"))
.select(from_json("json", schema).as("data"))
.select("data.*")

val query = parsedData.writeStream
.option("checkpointLocation”, "/checkpoint")
.partitionBy("date")
.format("parquet")
.start("/parquetTable")

@ databricks

Reading from Kafka

Sp@ley OpthﬂS to Conflgu re val rawData = spark.readStream
.format("kafka")
.option("kafka.boostrap.servers”,...)
.option("subscribe", "topic")

How?
load()

kafka.boostrap.servers => brokerl,broker2

What?
subscribe => topicl,topic2,topic3 // fixed list of topics
subscribePattern => topic* // dynamic list of topics
assign => {"topicA":[0,1] } // specific partitions
Where?

startingOffsets => latest et / €arliest / {"topicA":{"@":23,"1":345} }
®databricks

Reading from Kafka

rawData dataframe has

val rawData = spark.readStream

.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")

the following columns -1oad()

key value topic partition | offset | timestamp
oliglels%! [binary] "topicA" 0 345 1486087873
[binary] [binary] "topicB" 3 2890 1486086721

@ databricks

Transforming Data

Cast binary value to string ~ val parsedbata = rawbata

.selectExpr("cast (value as string) as json")

Name it COlumanOn .select(from_json("json", schema).as("data"))
.select("data.*")

@ databricks

Transforming Data

CaSt binary Va[ue tO String val parsedData = rawData
.selectExpr("cast (value as string) as json")

Name it COlumnjson .select(from_json("json", schema).as("data"))
.select("data.*")

Parse json string and expand into
nested columns, name it data

data (nested)

json l\ . .
. ‘ from Teon(eon” timestamp | device
["timestamp": 1486087873, "device": "devA”, .. } rom—JS..fjn(json’)
as data / 1486087873 devA

1486086721 devX

{ "timestamp": 1486082418, "device": "devX", .. }

@ databricks

Transforming Data

Cast binary value to string ~ val parsedbata = rawbata

. . .selectExpr("cast (value as string) as json")
Name it COlumanOn .select(from_json("json", schema).as("data"))
.select("data.*")
Parse json string and expand into

nested columns, name it data

(not nested)
data (nested)

Flatten the nested columns

timestamp | device
timestamp | device N

select("data.”") Y1486087873 | devA
- Y

1486087873 | devA

1486086721 | devX

1486086721 | devX

@ databricks

Transforming Data

Cast binary value to string val parsedbata = rawData

. . .selectExpr("cast (value as string) as json")
Name It COlumanOn .select(from_json("json", schema).as("data"))
.select("data.*")

Parse json string and expand into

4 " ™
nested columns, name it data powerful built-in APIs to

perform complex data

ransformation
Flatten the nested columns transformations

from_json, to_json, explode, ...
100s of functions

k (see our blog post) /

#databricks

Writing to %7 Parquet

Save parsed data as Parquet

table in the given path val query = parsedData.writeStream
.option("checkpointLocation", ...)
.partitionBy("date")
r : .format("parquet")
Partition files by date so that | ctare (" /parquetTable")
future queries on time slices of

datais fast
e.g. query on last 48 hours of data

#databricks

Checkpointing

Enable CheCprinting by val query = parsedData.writeStream

. . . i "checkpoi ion", ...
setting the checkpoint ot (o TN
location to save offset logs .partitionBy("date")

.start("/parquetTable/")

start actually starts a
continuous running
StreamingQuery in the
Spark cluster

#databricks

Streaming Query

//'
§8kqfkq D> Stream'ngQuery> /’///,

process
new data

process
new data

v v

Parquet

val query = parsedData.writeStream
.option("checkpointLocation", ...
.format("parquet")
.partitionBy("date")
.start("/parquetTable")

query is a handle to the continuously
running StreamingQuery

Used to monitor and manage the

execution

@ databricks

Data Consistency on Ad-hoc Queries

“, complex, ad-hoc
§3kafkq D seconds! (/// << queries on
Parquet [: E latest

data

Data available for complex, ad-hoc analytics within seconds

Parquet table is updated atomically, ensures prefix integrity
Even if distributed, ad-hoc queries will see either all updates from
streaming query or none, read more in our blog

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

#databricks

More Kafka Support [Spark 2.2]

Write outto Kafka result.writeStream

. . .format("kafka")
Dataframe must have binary fields Loption("topic”, "output")

named key and value .start()

Direct, interactive and batch Lt - spark
queries on Kafka .format("kafka™)
.option("subscribe"”, "topic")
Makes Kafka even more powerful .1oad()

as a storage platform!
df.registerTempTable("topicData")

spark.sql("select value from topicData")

#databricks

Amazon Kinesis [Databricks Runtime 3.0]

Configure with options (similar to Kafka)

spark.readStream
.format("kinesis")
.option("streamName", "myStream")
.option("region", "us-west-2")

How?
region => us-west-2 / us-east-1 / ...
awsAccessKey (optional) => AKIA...
awsSecretKey (optional) => ...

.option("awsAccessKey", ...)
.option("awsSecretKey", ...)
.load()

What?

streamName => name-of-the-stream

Where?

initialPosition => latest .y / €arliest / trim_horizon

@ databricks

Working With Time

Event Time

Many use cases require aggregate statistics by event time
E.g. what's the #errors in each system in the 1 hour windows?

Many challenges
Extracting event time from data, handling late, out-of-order data

DStream APIs were insufficient for event-time operations

@ databricks

Event time Aggregations

Windowing is just another type of grouping in Structured

Streaming
parsedData
.groupBy (window("timestamp","1 hour"))
. t
number of records every hour count)
parsedData

avg signal strength of each

device every 10 mins
.avg("signal™)

Support UDAFs!

@ databricks

Stateful Processing for Aggregations

t=1 t=2 t=3
|

Aggregates has to be saved as
distributed state between triggers

SIC SIC SIC

Each trigger reads previous state and
writes updated state

State stored in memory,
backed by write ahead log in HDFS/S3

Fault-tolerant, exactly-once guaranteel!

#databricks

Automatically handles Late Data

17:00 >

Keeping state allows > 1300 1400 1500 1600
late data to u pd ate 12:00-13:00{1] [12:00-13:00[3] [12:00-13:00[3] [12:00-13:00[5] [12:00-13:00]3
counts Of old windows 13:00-14:00(1| [1200 1400[2| [13:00-14:00[2| [13:00-14:00]2
14:00- 15:00{5| [14:00-15:00[5| [14:00- 15:00(6
15:00 - 16:00/4 15:00 - 16:00/4
16:00- 17:00|3

But size of the state increases indefinitely
if old windows are not dropped

red = state updated

with late data

#databricks

Watermarking

Watermark - moving threshold of
how late data is expected to be
and when to drop old state

Trails behind max seen event time

Trailing gap is configurable

event time
A
max event time
FEPIIRAA RR
12:30 PM
trailing gap
of 10 mins
A\
watermark data older
12:20 than
watermark
not expected

@ databricks

Watermarking

event time
Data newer than watermark may N

be late, but allowed to aggregate

max event time

Data older than watermark is "too
late" and dropped

Windows older than watermark watermark data too
automatically deleted to limit the late,
amount of intermediate state dropped

#databricks

Watermarking

event time
Useful only in stateful operations n
(streaming aggs, dropDuplicates, mapGroupsWithState, ...) O
TR RNAEFARN R
lgnored in non-stateful streaming allowed late data
queries and batch queries ateness allowed to
Of 10 mins aggregate
\
parsedData
.withWatermark("timestamp", "10 minutes") watermark data too
.groupBy (window("timestamp", "5 minutes")) late
.count() ’
dropped

@ databricks

Watermarking
*

parsedD?ta " L ‘ } "“]_2']_8 '
B oupby (WindoN(-Cimec tanp® 175 mintesTY) : . ' datais late, but
-count() 424} e s ./ considered in counts
12:13
1210 :.
@ ’ f=
£ = -~ .
= o 12:08
S Los | — data too late,
b y wm= 1204 ignored in counts,
12:04 > P -
. rocessin Ime
12:00 / 12:10 12:15 12:20 &
system tracks max
g q . watermark updated to
observed event time
12:14-10m =12:04

for next trigger, More details in this blog post
state < 12:04 deleted 1
®databricks

Clean separation of concerns

: arsedData
Query Semantics i .withWatermark("timestamp"”, "10 minutes")
.groupBy (window("timestamp","5 minutes"))
.count()
separated from .writeStream
.trigger("10 seconds")

.start()

Processing Details

@ databricks

Clean separation of concerns

. parsedData
Query Semantics .withWatermark("timestamp"”, "10 minutes")
.groupBy (window("timestamp",))
.count()
.writeStream
.trigger("10 seconds")
.start()

Processing Details

@ databricks

Clean separation of concerns

. parsedData . .
Query Semantics .withWatermark("timestamp", "10 minutes™)
How to group data by time? .groupBy (window("timestamp", "5 minutes™))
(same for batch & streaming) .count()

.writeStream

.trigger("10 seconds")

.start()

Processing Details
How late can data be?

@ databricks

Clean separation of concerns

. parsedData

Query Semantics .withWatermark("timestamp", "10 minutes™)
How to group data by time? .groupBy (window("timestamp", "5 minutes™))
(same for batch & streaming) .count()

.writeStream

.trigger()
.start()

Processing Details
How late can data be?

@ databricks

Arbitrary Stateful Operations [Spark 2.2]

mapGroupsWithState
applies any user-defined
stateful function to a
user-defined state

Direct support for per-key
timeouts in event-time or
processing-time

Supports Scala and Java

ds.groupByKey(.id)
.mapGroupsWithState
(timeoutConf)
(mappingWithStateFunc)

def mappingWithStateFunc(
key: K,
values: Iterator[V],
state: GroupState[S]): U = {
// update or remove state
// set timeouts
// return mapped value

@& databricks

Other interesting operations

Streaming Deduplication
Watermarks to limit state

parsedData. ("eventId")

Stream-batch Joins val batchData = spark.read

.format("parquet")
.load("/additional-data")
parsedData.join(batchData, "device")

Stream-stream Joins
Can use mapGroupsWithState

Direct support coming with
Spark 2.3!

@ databricks

ETL (@ #databricks

#databricks

Evolution of a Cutting-Edge Data Pipeline

—~— % APACHE
Events ——
— kafka.

=

Data Lake

/

Streaming
Analytics

Tk

@ databricks

Evolution of a Cutting-Edge Data Pipeline

AAAAAA

Data Lake

Streaming
Analytics

Tk

@ databricks

Challenge #1: Historical Queries?

1) A-arch

Data Lake

Streaming
Analytics

E

Reporting

@ databricks

Challenge #2: Messy Data?

Data Lake

1) A-arch

1 2 Validation

Streaming
Analytics

E

Reporting

@ databricks

Challenge #3: Mistakes and Failures?

1) A-arch

\ APACHE APACHE
Events j§gkafkam—1—>5qul’(\; — |1l 2) Validation
1l j Streaming @) Reprocessing

AAAAAA ‘I\Z [1\730 Analytics

@
(ll
|
g
At
l

E

@ databricks

Challenge #4: Query Performance?

. <"Z 1> A\-arch
Events ;§3kafkaw—1—>55&)”rkm — |11y 2) Validation

1l j Streaming @) Reprocessing

AAAAAA ‘I\Z (/] Analytics
e 5

4 Compaction

Y
Data Lake 1%85 Reporting

@ databricks

Databricks Delta

First UNIFIED data management system that delivers:

The
RELIABILITY &

PERFORMANCE
of data warehouse

The

SCALE
of data lake

The
LOW-LATENCY

of streaming

#databricks

Databricks Delta

THE GOOD THE GOOD

OF DATA LAKES OF DATA WAREHOUSES

* Massive scale on Amazon S3 e Pristine Data

e Open Formats (Parquet, ORC) « Transactional Reliability

* Predictions (ML) & Real Time e Fast Queries (10-100x)
Streaming

Enables Predictions, Real-time and Ad Hoc
Analytics at Massive Scale

#databricks

Databricks Delta Under the Hood

MASSIVE SCALE « Decouple Compute & Storage
RELIABILITY ACID Transactions & Data Validation
PERFORMANCE » Data Indexing & Caching (10-100x)
LOW-LATENCY * Real-Time Streaming Ingest

@ databricks

The Canonical Data Pipeline

. <"Z 1) A-arch
Events ;§3kafkaw—1—>55&)”rkm — llull| @ validation
1l j Streaming @) Reprocessing

AAAAAA ‘l\z (/] Analytics
e 5

Compaction

N
Data Lake 1%85 Reporting

@ databricks

The Delta Architecture

gt

K&fka . quwncg Fdatabricks
y Spor"\; DELTA Spar‘llg

N A

DATA LAKE

The The
of data lake

of data warehouse of streaming

all

Streaming
Analytics

am

[l

Reporting

@ databricks

Delta @ #databricks

14+ billion records / hour
with 10 nodes

meet diverse latency requirements
as efficiently as possible

@ databricks

Delta @ ®databricks

Raw Tables Summary Tables
€ databricks

§€ DELTA —— W
Kafka — ®databricks _ sdatabricks _— Socaming

_» DELTA DELTA ———,

.
DATA LAKE € databricks Reporting

DELTA

Larger Size Longer Retention #databricks

More Info

Structured Streaming Programming Guide

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

Databricks blog posts for more focused discussions

https://databricks.com/blog/2017/08/24/anthology-of-technical-assets-on-apache-sparks-structured-streaming.html

https://databricks.com/blog/2017/10/25/databricks-delta-a-unified-management-system-for-real-time-big-data.html

and more to come, stay tuned!!

@ databricks

Try Apache Spark in Databricks!

UNIFIED ANALYTICS PLATFORM
 Collaborative cloud environment
* Free version (community edition)

Try for free today

DATABRICKS RUNTIME 3.4 databricks.com

« Apache Spark - optimized for the cloud
« Caching and optimization layer - DBIO
 Enterprise security - DBES

@ databricks

https://databricks.com/company/careers

€ databricks

g3t

o

Thank you

‘“Does anyone have any questions for my answers?”
- Henry Kissinger

burak@databricks.com

€ databricks

