
Wes McKinney

 Apache Arrow

Cross-Language Development
Platform for In-Memory Analytics

DataEngConf Barcelona 2018

Wes McKinney

• Created Python pandas project (~2008), lead
developer/maintainer until 2013

• PMC Apache Arrow, Apache Parquet, ASF Member
• Wrote Python for Data Analysis (1e 2012, 2e

2017)
• Formerly Co-founder / CEO of DataPad (acquired

by Cloudera in 2014)
• Other OSS work: Ibis, Feather, Apache Kudu,

statsmodels

● Raise money to support full-time

open source developers

● Grow Apache Arrow ecosystem

● Build cross-language, portable

computational libraries for data

science

● Build relationships across industry

https://ursalabs.org

People

Initial Sponsors and Partners

Prospective sponsors / partners,
please reach out: info@ursalabs.org

Open standards: why do they matter?

• Simplify system architectures

• Reduce ecosystem fragmentation

• Improve interoperability

• Reuse more libraries and algorithms

Example open standards

• Human-readable semi-structured data: XML, JSON
• Structured data query language: SQL
• Binary storage formats (with metadata)

• NetCDF
• HDF5
• Apache Parquet, ORC

• Serialization / RPC protocols
• Apache Avro
• Protocol buffers

• Not an open standard: Excel, CSV (grrrr)

Standardizing in-memory data

• Best example: strided ndarray / tensor memory (NumPy /
Fortran-compatible)

• Why?
• Zero-overhead memory sharing between libraries in-memory and processes

via shared memory
• Reuse algorithms
• Reuse IO / storage code

Tables and data frames

• Notoriously not based on open standards
• Vary widely in supported data types (e.g. nested data)
• Where are they found?

• Internals of SQL databases
• Big data systems (Apache Spark, Apache Hive)
• In-memory data frame libraries: Python (pandas), R (base, data.table), Julia

(DataFrames.jl)
• We say “data frame” but the byte-level RAM layout varies greatly

from system-to-system

Many data frame projects

● These are the workhorse libraries of data engineering,
data preparation, and feature engineering for AI/ML

● Little code reuse across projects
● Uneven performance and features

What’s driving the fragmentation?

● Tight coupling between front end and back end
● Feudal nature of open source software communities
● Incompatible memory representations

○ Cannot share data without serialization
○ Cannot share algorithms because implementation

depends on memory representation

 Apache Arrow

● OSS Community initiative conceived in 2015
● Intersection of big data, database systems, and data

science tools
● Key idea: Language agnostic open standards to

accelerate in-memory computing
● https://github.com/apache/arrow

Defragmenting Data Access

“Portable” Data Frames

pandas

R

JVM

Non-Portable Data Frames

Arrow

Portable Data Frames

…
Share data and algorithms at ~zero cost

Analytic database architecture

Front end API

Computation Engine

In-memory storage

IO and
Deserialization

● Vertically integrated /
“Black Box”

● Internal components do
not have a public API

● Users interact with front
end

Analytic database, deconstructed

Front end API

Computation Engine

In-memory storage

IO and
Deserialization

● Components have public
APIs

● Use what you need

● Different front ends can
be developed

Analytic database, deconstructed

Front end API

Computation Engine

In-memory storage

IO and
Deserialization

Arrow is front end agnostic

Arrow Use Cases

● Data access
○ Read and write widely used storage formats
○ Interact with database protocols, other data sources

● Data movement
○ Zero-copy interprocess communication
○ Efficient RPC / client-server communications

● Computation libraries
○ Efficient in-memory / out-of-core data frame-type analytics
○ LLVM-compilation for vectorized expression evaluation

Arrow’s Columnar Memory Format

• Runtime memory format for analytical query processing

• Companion to serialization tech like Apache {Parquet, ORC}

• “Fully shredded” columnar, supports flat and nested schemas

• Organized for cache-efficient access on CPUs/GPUs

• Optimized for data locality, SIMD, parallel processing

• Accommodates both random access and scan workloads

Arrow-accelerated Python + Apache Spark

● Joint work with Li Jin from Two
Sigma, Bryan Cutler from IBM

● Vectorized user-defined functions,
fast data export to pandas

import pandas as pd

from scipy import stats

@pandas_udf('double')

def cdf(v):

 return pd.Series(stats.norm.cdf(v))

df.withColumn('cumulative_probability',

 cdf(df.v))

Arrow-accelerated Python + Apache Spark

Spark SQL

Arrow Columnar
Stream Input

PySpark Worker

Zero copy via socket pandas

Arrow Columnar
Stream Output

to arrow

from arrow

from arrow

to arrow

New work: Arrow Flight RPC Framework

• A gRPC-based framework for defining custom data services that
send and receive Arrow columnar data natively

• Uses Protocol Buffers v3 for client protocol
• Pluggable command execution layer, authentication
• Low-level gRPC optimizations

• Write Arrow memory directly onto outgoing gRPC buffer
• Avoid any copying or deserialization

Arrow Flight - Parallel Get

Client Planner
GetFlightInfo

FlightInfo

DoGet Data Nodes

FlightData

DoGet

FlightData

...

Arrow Flight - Efficient gRPC transport

Client

DoGet

Data Node

FlightData

Row
Batch

Row
Batch

Row
Batch

Row
Batch

Row
Batch...

Data transported in a Protocol
Buffer, but reads can be made
zero-copy by writing a custom
gRPC “deserializer”

Flight: Static datasets and custom commands

• Support “named” datasets, and “command” datasets
• Commands are binary, and will be server-dependent
• Implement custom commands using general structured data

serialization tools

message SQLQuery {
 binary database_uri = 1;
 binary query = 2;
}

Commands.proto GetFlightInfo RPC

type: CMD
cmd: <serialized command>

Flight: Custom actions

• Any request that is not a table pull or push, can be implemented as
an “action”

• Actions return a stream of opaque binary data

Arrow: History and Status

• Community initiative started in 2016, initially backed by leading
developers of ~13 major OSS data processing projects

• Project development status
• Codebase 2.5 years old
• > 190 distinct contributors
• 10 major releases
• Some level of support in 10 programming languages (C, C++, Go, Java,

JavaScript, MATLAB, Python, R, Ruby, Rust)
• Over 500K monthly installs in Python alone

Example: Gandiva, Arrow-LLVM compiler

https://github.com/dremio/gandiva

SELECT year(timestamp), month(timestamp), …
FROM table
...

Input Table
Fragment

Arrow Java
JNI (Zero-copy)

Evaluate
Gandiva

LLVM
Function

Arrow C++

Result Table
Fragment

Example use: Ray ML framework from Berkeley RISELab

March 20, 2017All Rights Reserved 30

Source: https://arxiv.org/abs/1703.03924

• Uses Plasma, shared
memory-based object store
originally developed for Ray

• Zero-copy reads of tensor
collections

Arrow on the GPU

• NVIDIA-led GPU Open Analytics Initiative

(http://gpuopenanalytics.com)

• “GPU DataFrame”: Arrow on the GPU

• Example: Execute Numba-compiled code on SQL results from MapD

shared via CUDA IPC

• Plasma also supports GPU shared memory

http://gpuopenanalytics.com

Some Industry Contributors to Apache Arrow

ClearCode

Upcoming Roadmap

• Software development lifecycle improvements

• Data ingest / access / export

• Computational libraries (CPU + GPU)

• Expanded language support

• Richer RPC / messaging

• More system integrations

Computational libraries

• “Kernel functions” performing vectorized analytics on Arrow

memory format

• Select CPU or GPU variant based on data location

• Operator graphs (compose multiple operators)

• Subgraph compiler (using LLVM -- see Gandiva)

• Runtime engine: execute operator graphs

Data Access / Ingest

• Apache Avro
• Apache Parquet nested data support
• Apache ORC
• CSV
• JSON
• ODBC / JDBC
• … and likely other data access points

Arrow-powered Data Science Systems

• Portable runtime libraries, usable from multiple programming

languages

• Decoupled front ends

• Companion to distributed systems like Dask, Ray

Getting involved

• Join dev@arrow.apache.org

• PRs to https://github.com/apache/arrow

• Learn more about the Ursa Labs vision for Arrow-powered data

science: https://ursalabs.org/tech/

mailto:dev@arrow.apache.org
https://github.com/apache/arrow
https://ursalabs.org/tech/

