FLINK SQL IN ACTION

TIMO WALTHER, SOFTWARE ENGINEER

DATA ENG CONF, BARCELONA
SEPTEMBER 25, 2018

dataArtisans

ABOUT DATA ARTISANS

Original Creators of
Apache Flink®

2 © 2018 data Art isans

PLATFORM

Real-Time Stream Processing
Enterprise-Ready

DATA ARTISANS PLATFORM

3

© 2018 data Artisans

- -.“ m F-'

5

Application Manager

Application lifecycle

[") Streaming PLATFORM
o Ledger '

Logging

; 0O i
PR

ﬁ"fi Metrics

Apache Flink

management .
g Stateful stream processing @ CI/CD
‘- - J <. - - -/ < -
Resource Kubernetes
Management Container platform

U) WP S —
. J

\—— o ¢
\

data-artisans.com/download

WHAT IS APACHE FLINK?

dataArtisans

5

Core Building Blocks for Stream Processing

Event Streams State (Event) Time Snapshots

. consistency with forking /
real-time and complex .
replay business logic out-of-order data versioning /
X and late data time-travel

© 2018 data Artisans

WHAT IS ASTREAMING ARCHITECTURE?

Classic tiered architecture Streaming architecture

%

compute all modifications

layer / \ are local

AR

N
)
database
layer .

L

synchronous reads/writes
across tier boundary

WHAT IS APACHE FLINK?

/Scalable embedded state

8 Access at memory speed &
scales with parallel operators.

WHAT IS APACHE FLINK?

Applications
Devices

etc.

Stateful computations over streams
real-time and historic,
fast, scalable, fault tolerant,
event time, large state, exactly-once

Queries Application

Streams <: I I I I I I \ / ’ ; 4’ % Database
storics / [TS \ _—
11 [OOEES

—

HARDENED AT SCALE
UBER

Streaming Platform Service

billions messages per day
A lot of Stream SQL

€.

Alibaba Group

1000s jobs, 100.000s cores,
10 TBs state, metrics, analytics,
real time ML,
Streaming SQL as a platform

NETFLIX

Streaming Platform as a Service
3700+ container running Flink,
1400+ nodes, 22k+ cores, 100s of jobs,
3 trillion events / day, 20 TB state

Fraud detection
Streaming Analytics Platform

POWERED BY APACHE FLINK

Alibaba Group

NETFLIX UBER

'\@ ' lcll o lc; ' BY Microsoft @ Expedia

DLLENVC yelpSs YR &

) 4

amapeus AROVIO Tafinia

I .
@ airbnb SK&’?elecom O\/!:m criteo L

10 | © 2018 data Artisans

S

HUAWEI

BetterCloud

/)

COMCAST

S

Caplta/l()ne°

» zalando

otto group

FLINK SQL

dataArtisans

FLINK'S POWERFUL ABSTRACTIONS

Layered abstractions to

navigate simple to complex use cases

High-level
Analytics API

Stream- & Batch
Data Processing

Stateful Event-
Driven Applications

12 © 2018 data Artisans

SELECT room, TUMBLE_END(rowtime, INTERVAL 'l' HOUR), AVG(temp)

FROM sensors
GROUP BY TUMBLE(rowtime, INTERVAL '1' HOUR), room

SQL / Table API (dynamic tables)

DataStream API (streams, windows)

val stats = stream
.keyBy("sensor"
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

Process Function (events, state, time)

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {

}

// work with event and state
(event, .value) match { .. }

out.collect(..) // emit events
.update(..) // modify state

// schedule a timer callback .
ctx.timerService.registerEventTimeTimer (event.timestamp + 500) L

APACHE FLINK'S RELATIONAL APIS

ANSI SQL LINQ-style Table API
tableEnvironment

SELECT user, COUNT(url) AS cnt .scan("clicks")

FROM clicks .groupBy('user)

GROUP BY user .select('user, 'url.count as 'cnt)

Unified APIs for batch & streaming data

A query specifies exactly the same result
regardless whether its input is
static batch data or streaming data.

13 © 2018 data Artisans

QUERY TRANSLATION

tableEnvironment
.scan("clicks")
.groupBy('user)
.select('user, 'url.count as 'cnt)

SELECT user, COUNT(url) AS cnt
FROM clicks
GROUP BY user

~\
J
~\
J

[Table API] [SQL API]

l l

Table API : Calcite Catalo Calcite
Validator | d) Parser & Validator
\ Calcite Logical Plan /

External
Tables
DataSet

f
.
s
L

«4— DataStream

—
—

J

Input data is L J Input data is
bounded) . . unbounded
(batch) [DataSet Rules]—> Calcite Optimizer |&—— DataStream Rules (streaming)

[DataSet]4—[DataSet Plan] DataStream Plan —p DataStream

14 | © 2018 data Artisans

WHAT IF “CLICKS" IS A FILE?

Cuser | crime | ui
12:00:00 | https://...

12:00:00 | https://...
12:00:02 | https://...
12:00:03 | https://...

15 © 2018 data Artisans

Input data is
read at once

\

Result is
produced at once

-

/

o

SELECT

user,
COUNT(url) as cnt

FROM clicks
GROUP BY user

~

J

WHAT IF “CLICKS" IS A STREAM?

Result is
continuously updated

Input data is
continuously read

iser crime |1 N ECEECE
Mary | 12:00:00 | https://... —
" e
- COUNT(url) as cnt _.
12:00:02 https://... ——] FROM clicks

- Liz 1
12:00:03 | https://... _.\GROUP BY user Py ECH

The result is the same!

16 © 2018 data Artisans

WHY IS STREAM-BATCH UNIFICATION
IMPORTANT?

* Usability
—ANSI SQL syntax: No custom “StreamSQL" syntax.
—ANSI SQL semantics: No stream-specific results.

* Portability
—Run the same query on bounded and unbounded data
—Run the same query on recorded and real-time data

' «— bounded query — | < bounded query ———
| start of the stream «----------------. past now future ----------mmrmmmm e >
| »

. «<—— unbounded query

| «—— unbounded query

* How can we achieve SQL semantics on streams?

DATABASE SYSTEMS RUN QUERIES ON STREAMS

* Materialized views (MV) are similar to regular views,
but persisted to disk or memory
—Used to speed-up analytical queries
—~MVs need to be updated when the base tables change

* MV maintenance is very similar to SQL on streams
—Base table updates are a stream of DML statements
—MV definition query is evaluated on that stream
—MV is query result and continuously updated

CONTINUOUS QUERIES IN FLINK

* Core conceptis a “Dynamic Table”
—Dynamic tables are changing over time

* Queries on dynamic tables

—produce new dynamic tables (which are updated based on input)
—do not terminate

* Stream ¢> Dynamic table conversions

—]l'F,ﬂTI? ’gil = : —
8+teaw\® @ D’%tl‘.:"‘ —> C&“&“&““J——b ,5‘3'_;:‘:'&': |—® (Qgteaw\

STREAM < DYNAMIC TABLE CONVERSIONS

* Append Conversions SELECT user, url

: FROM clicks
—Records are only inserted (appended) | \cre Lot L1ke S4xyz. com’

* Upsert Conversions
—Records have a (composite) unique key

—Records are upserted/deleted by key

SELECT user, COUNT(url)

. FROM clicks
* Retract Conversions GROUP BY user

—Records are inserted/deleted
—Update = delete old version + insert new version

SQL FEATURES

dataArtisans

SQL FEATURE SET IN FLINK 1.6.0

* SELECT FROM WHERE

« GROUP BY / HAVING
—Non-windowed, TUMBLE, HOP, SESSION windows

* JOIN/IN
—Windowed INNER, LEFT / RIGHT / FULL OUTER JOIN
—Non-windowed INNER, LEFT / RIGHT / FULL OUTER JOIN

* [streaming only] OVER / WINDOW
—UNBOUNDED / BOUNDED PRECEDING

* [batch only] UNION / INTERSECT / EXCEPT / ORDER BY

SQL FEATURE SET IN FLINK 1.6.0

* Support for POJOs, maps, arrays, and other nested types

* Large set of built-in functions (150+)
_ LIKE, EXTRACT, TIMESTAMPADD, FROM_BASE64, MD5, STDDEV_POP, AVG, ..

* Support for custom UDFs (scalar, table, aggregate)

See also:
https://ci.apache.org/projects/flink/flink-docs-master/dev/table/functions.html
https://ci.apache.org/projects/flink/flink-docs-master/dev/table/udfs.html

UPCOMING SQL FEATURES

* Streaming enrichment joins (Temporal joins) [FLINK-9712]

SELECT

SUM(o.amount * r.rate) AS amount
FROM

Orders AS o,

LATERAL TABLE (Rates(o.rowtime)) AS r
WHERE r.currency = o.currency;

* Support for complex event processing (CEP) [FLiNK-6935)
— MATCH_RECOGNIZE

* More connectors and formats [FLINK-8535]

WHAT CAN | BUILD WITH THIS?

» Data Pipelines

—Transform, aggregate, and move events in real-time [Fe]
oo () e /Q;;/
e () COA:M A"" ndt ¥ @—e
* Low-latency ETL)
—Convert and write streams to file systems, DBMS, K-V stores,
indexes, .

—Ingest appearing files to produce streams

* Stream & Batch Analytics

—Run analytical queries over bounded and unbounded data __
—Query and compare historic and real-time data A @ .
w2 il

— R

S'*cd
S ()~ |G | G oo
e D7 o W &9 E@E

i |

* Power Live Dashboards
— Compute and update data to visualize in real-time @ =3 .
L

SOUNDS GREAT! HOW CAN | USE IT?

* Embed SQL queries in regular (Java/Scala) Flink applications
—Tight integration with DataStream and DataSet APIs
— Mix and match with other libraries (CEP, ProcessFunction, Gelly)
— Package and operate queries like any other Flink application

* Run SQL queries via Flink’s SQL CLI Client

—Interactive mode: Submit query and inspect results
— Detached mode: Submit query and write results to sink system

SQL CLIENT BETA

dataArtisans

INTRODUCTION TO SQL CLIENT

* Newest member of the Flink SQL family (since Flink 1.5)

INTRODUCTION TO SQL CLIENT

* Goal: Flink without a single line of code
— only SQL and YAML

— "drag&drop” SQL JAR files for connectors and formats
* Build on top of Flink's Table & SQL API

» Useful for prototyping & submission

SQL CLIENT CONFIGURATION

: ‘MyTableSource
: -source
: -append

: - filesystem
: -'"/path/to/something.csv"

:Csv

: ‘MyFieldl
:INT

: ‘MyField2
: -VARCHAR

. g

: ‘MyFieldl
:INT

: ‘MyField2
: -VARCHAR

: ‘MyCustomView
: - "SELECT MyField2 FROM MyTableSource"

: -myUDF
:-class
: - foo.bar.AggregateUDF

: -streaming
:-table
:-1

See also:
https://ci.apache.org/projects/flink/flink-docs-master/dev/table/sglClient.html

PLAY AROUND WITH FLINK SQL

Database /

SQL Client

HDFS

SELECT

Catalog

user, .
COUNT(url) AS cnt Submit Query
FROM clicks >
GROUP BY user Optimizer Smeit JOb
Changelog) Results
or Table Result Server

Results

Gateway

Initialized by:

——environment my-config.yaml Initialized by:
conf/sql-client—-defaults.yaml

Modified by DDL commands within session.

31 | © 2018 data Artisans

SUBMIT DETACHED QUERIES

Database /
HDFS

SQL Client

INSERT INTO dashboard
SELECT .
user, Submit Query
COUNT (url) AS cnt >
FROM clicks

Catalog

Submit Job

GROUP BY user Optimizer . Oue
Cluster ID &
Job ID Result Server qle

Target Information

Gateway

Initialized by:

——environment my-config.yaml Initialized by:
conf/sql-client—-defaults.yaml

Modified by DDL commands within session.

32 | © 2018 data Artisans

SERVING A DASHBOARD

Discover ~ Visualze Dashboard Settings @ January 1t 2013, 00:00:00.000 to January 6th 2013, 00:00:00.000

INSERT INTO AreaCnts
SELECT g

toAreaId(lon, lat) AS areald, =

Field

FROM TaxiRides =
WHERE isStart e

GROUP BY toAreald(lon, lat)

16058 i
518058 1036086 1
| © 103,608 - 1554114
| @ 1554114207212
2072142259017
e,
BV-SA

i
n f
J— . [i i e
"1 ii[1] ili ‘
S | |
33 © 2018 data Artisans . : o ||||’ e ‘Illll| ‘Imil L LT

Veulze Dashboard Settngs

Elastic
Search

buckets
1 xas

Agaregation

20000

Sum ofont

LL\;E

H
H

Lo @i

0 Show empty buckets © o

«Advanced dme per hour

¥ Add sub-buckets N

ACTION TIME!

dataArtisans

IDENTIFY POPULAR PICK-UP / DROP-OFF
LOCATIONS

= Compute every 5 minutes for each area the
number of departing and arriving taxis.

SELECT
area,
isStart,
TUMBLE_END(rowTime, INTERVAL '5' MINUTE) AS cntEnd,
COUNT(*) AS cnt
FROM (SELECT rowTime, isStart, toAreaId(lon, lat) AS area
FROM TaxiRides)
GROUP BY
area,
isStart,
TUMBLE(rowTime, INTERVAL '5' MINUTE)

35 | © 2018 data Artisans

AVERAGE RIDE DURATION PER PICK-UP
LOCATION

= Join start ride and end ride events on rideld and
compute average ride duration per pick-up location.

SELECT pickUpArea,
AVG(timeDiff(s.rowTime, e.rowTime) / 60000) AS avgDuration
FROM (SELECT rideId, rowTime, toAreaId(lon, lat) AS pickUpArea
FROM TaxiRides
WHERE isStart) s
JOIN
(SELECT rideld, rowTime
FROM TaxiRides
WHERE NOT isStart) e
ON s.rideld = e.rideId AND
e.rowTime BETWEEN s.rowTime AND s.rowTime + INTERVAL '1' HOUR
GROUP BY pickUpArea

36 | © 2018 data Artisans

SUMMARY

* Unification of stream and batch is important. @

* Flink's SQL solves many streaming and batch use cases.
* Runs in production at Alibaba, Uber, and others.
* Query deployment as application or via CLI

* Get involved, discuss, and contribute!

Stream

Processing with
THANK YOU!
- B
@twa |th I Available on O'Reilly Early Release!
@dataArtisans

WE ARE HIRING

data-artisans.com/careers

@ApacheFlink

dataArtisans

