
Building highly reliable data 
pipelines @ Datadog

Quentin FRANCOIS
Team Lead, Data Engineering

1

DataEng Barcelona ‘18



2



3



4



5



Building highly reliable data 
pipelines @ Datadog

6

Quentin FRANCOIS
Team Lead, Data Engineering DataEng Barcelona ‘18



Reliability is the probability that a system will 
produce correct outputs up to some given time t.

    

Source:  E.J. McClusky & S. Mitra (2004). "Fault Tolerance" in Computer Science Handbook 2ed. ed. A.B. Tucker. CRC Press.
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Highly reliable data pipelines
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1. Architecture
2. Monitoring
3. Failures handling

Highly reliable data pipelines
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Historical metric queries

Time series data

metric system.load.1

timestamp 1526382440

value 0.92

tags host:i-xyz,env:dev,...
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Historical metric queries
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Historical metric queries
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Historical metric queries
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High 
resolution 

data

Low 
resolution 

data

1pt /min
1pt /hour
1pt /day

1pt /sec

AWS S3

• Runs once a day.
• Dozens of TBs of input data.
• Trillions of points processed.

Rollups 
pipeline
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2. Monitoring
3. Failures handling

Highly reliable data pipelines
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Our big data platform architecture

CLUSTERS

DATA

WORKERS

USERS

Luigi Spark

Datadog
monitoring

S3

EMR

Web SchedulerCLI
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Many ephemeral clusters
• New cluster for every pipeline.
• Dozens of clusters at a time.
• Median lifetime of ~3 hours.
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Total isolation

We know what is happening and why.
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Pick the best hardware for each job

For CPU-bound jobs

c3

For memory-bound jobs

r3
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Scale up/down clusters

• If we are behind.
• Scale as we grow.
• No more waiting on loaded clusters.
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Safer upgrades of EMR/Hadoop/Spark

5.13 5.12

5.125.125.12
22



Spot-instance clusters

Ridiculous savings 
(up to 80% off the on-demand price)

Nodes can die at any time
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How can we build highly reliable data pipelines 
with instances killed randomly all the time?
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No long running jobs

• The longer the job, the more work you lose on average.

• The longer the job, the longer it takes to recover.
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No long running jobs

0     9
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No long running jobs

Pipeline A

Pipeline B

0

Time 
(hours)    97 10 16

Job failure
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Break down jobs into smaller pieces

Vertically - persist intermediate data between transformations.

Horizontally - partition the input data.
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Example
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Rollups pipeline
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Input 
data

Output 
data

Rollups pipeline
Raw time series 
data

Aggregated time 
series data
(custom file format)

1. Aggregate high 
resolution data.

2. Store the 
aggregated data  
in our custom file 
format.

1

2



Example
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Output 
data

Checkpoint
data

Input 
data

Vertical split

Aggregated time 
series data
(Parquet format)

Raw time series 
data

Aggregated time 
series data
(custom file format)
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2

1. Aggregate high 
resolution data.

2. Store the 
aggregated data  
in our custom file 
format.

1
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Output 
data

Checkpoint
data

Horizontal split

Aggregated time 
series data
(Parquet format)

Raw time series 
data

Aggregated time 
series data
(custom file format)

1

2

A B

C D

1. Aggregate high 
resolution data.

2. Store the 
aggregated data  
in our custom file 
format.
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series data
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2. Store the 
aggregated data  
in our custom file 
format.

1

2



Break down jobs into smaller pieces
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Fault tolerance

Performance



Lessons

• Many clusters for better isolation.
• Break down jobs into smaller pieces.
• Trade-off between performance and fault tolerance.
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1. Architecture
2. Monitoring
3. Failures handling

Highly reliable data pipelines
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Cluster tagging

#rollups

#anomaly
-detection
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Monitor cluster metrics
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Monitor cluster metrics
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Monitor cluster metrics
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Monitor cluster metrics
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Monitor work metrics

More details: datadoghq.com/blog/monitoring-spark/
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https://www.datadoghq.com/blog/monitoring-spark/


Monitor work metrics
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Monitor work metrics
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Monitor work metrics
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Monitor data lag
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1 point/sec data lag

1 point/hour data lag



Lessons

• Measure, measure and measure!
• Alert on meaningful and actionable metrics.
• High level dashboards.

48



1. Architecture
2. Monitoring
3. Failures handling

Highly reliable data pipelines
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Data pipelines will break

Hardware 
failures

Bad code 
changes
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Upstream 
delays

Increasing 
volume of 

data



Data pipelines will break

1. Recover fast.
2. Degrade gracefully.
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Recover fast

• No long running job.
• Switch from spot to on-demand clusters.
• Increase cluster size.
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Recover fast: easy way to rerun jobs

• Needed when jobs run but produce some bad data.
• Not always trivial.
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Example: rerun the rollups pipeline

2018-01

2018-02

2018-03

2018-04

2018-05

s3://bucket/
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Example: rerun the rollups pipeline
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Example: rerun the rollups pipeline

as-of_2018-05-01

as-of_2018-05-02

...

as-of_2018-05-21

as-of_2018-05-22

as-of_2018-05-22_run-2

s3://bucket/2018-05/

Active location
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Degrade
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A

A

B

B

C

C

D

D

gracefully

• Isolate issues to a limited 
number of customers.

• Keep the functionalities 
operational at the cost of 
performance/accuracy.



Degrade gracefully: skip corrupted files

• Job failure caused by limited corrupted input data.
• Don’t ignore real widespread issues.
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Lessons

• Think about potential issues ahead of time.
• Have knobs ready to recover fast.
• Have knobs ready to limit the customer facing impact.
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Conclusion
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Conclusion

• Know your time constraints.
• Break down jobs into small survivable pieces.
• Monitor cluster metrics, job metrics and data lags.
• Think about failures ahead of time and get prepared.

69

Building highly reliable data pipelines



Thanks!

We’re hiring!

qf@datadoghq.com
https://jobs.datadoghq.com
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http://jobs.datadoghq.com/

