
Building highly reliable data 
pipelines @ Datadog

Quentin FRANCOIS
Team Lead, Data Engineering

1

DataEng Barcelona ‘18



2



3



4



5



Building highly reliable data 
pipelines @ Datadog

6

Quentin FRANCOIS
Team Lead, Data Engineering DataEng Barcelona ‘18



Reliability is the probability that a system will 
produce correct outputs up to some given time t.

    

Source:  E.J. McClusky & S. Mitra (2004). "Fault Tolerance" in Computer Science Handbook 2ed. ed. A.B. Tucker. CRC Press.

7



1. Architecture

Highly reliable data pipelines

8



1. Architecture
2. Monitoring

Highly reliable data pipelines

9



1. Architecture
2. Monitoring
3. Failures handling

Highly reliable data pipelines

10



Historical metric queries

Time series data

metric system.load.1

timestamp 1526382440

value 0.92

tags host:i-xyz,env:dev,...

11



Historical metric queries

12

1 point/second



Historical metric queries

13

1 point/day



Historical metric queries

14

High 
resolution 

data

Low 
resolution 

data

1pt /min
1pt /hour
1pt /day

1pt /sec

AWS S3

• Runs once a day.
• Dozens of TBs of input data.
• Trillions of points processed.

Rollups 
pipeline



1. Architecture
2. Monitoring
3. Failures handling

Highly reliable data pipelines

15



Our big data platform architecture

CLUSTERS

DATA

WORKERS

USERS

Luigi Spark

Datadog
monitoring

S3

EMR

Web SchedulerCLI

16

EMR EMR EMR



Our big data platform architecture

CLUSTERS

DATA

WORKERS

USERS

Luigi Spark

Datadog
monitoring

S3

EMR

Web SchedulerCLI

17

EMR EMR EMR



Many ephemeral clusters
• New cluster for every pipeline.
• Dozens of clusters at a time.
• Median lifetime of ~3 hours.

18



Total isolation

We know what is happening and why.

19



Pick the best hardware for each job

For CPU-bound jobs

c3

For memory-bound jobs

r3

20



Scale up/down clusters

• If we are behind.
• Scale as we grow.
• No more waiting on loaded clusters.

21



Safer upgrades of EMR/Hadoop/Spark

5.13 5.12

5.125.125.12
22



Spot-instance clusters

Ridiculous savings 
(up to 80% off the on-demand price)

Nodes can die at any time

23

-

+



Spot-instance clusters

Ridiculous savings 
(up to 80% off the on-demand price)

Nodes can die at any time

24

-

+



How can we build highly reliable data pipelines 
with instances killed randomly all the time?

25

?



No long running jobs

• The longer the job, the more work you lose on average.

• The longer the job, the longer it takes to recover.

26



No long running jobs

0     9

27

Pipeline A

Pipeline B

Time 
(hours)



No long running jobs

Pipeline A

Pipeline B

0

Time 
(hours)    97 10 16

Job failure

28



Break down jobs into smaller pieces

Vertically - persist intermediate data between transformations.

Horizontally - partition the input data.

29



Example

30

Input 
data

Output 
data

Rollups pipeline

Aggregated time 
series data
(custom file format)

Raw time series 
data



Example

31

Input 
data

Output 
data

Rollups pipeline
Raw time series 
data

Aggregated time 
series data
(custom file format)

1. Aggregate high 
resolution data.

2. Store the 
aggregated data  
in our custom file 
format.

1

2



Example

32

Output 
data

Checkpoint
data

Input 
data

Vertical split

Aggregated time 
series data
(Parquet format)

Raw time series 
data

Aggregated time 
series data
(custom file format)

1

2

1. Aggregate high 
resolution data.

2. Store the 
aggregated data  
in our custom file 
format.

1

2



Example

33

Output 
data

Checkpoint
data

Horizontal split

Aggregated time 
series data
(Parquet format)

Raw time series 
data

Aggregated time 
series data
(custom file format)

1

2

A B

C D

1. Aggregate high 
resolution data.

2. Store the 
aggregated data  
in our custom file 
format.

1

2



Example

34

A

A

Horizontal split
B

B

C

C

D

D

Aggregated time 
series data
(Parquet format)

Raw time series 
data

Aggregated time 
series data
(custom file format)

1

2

1. Aggregate high 
resolution data.

2. Store the 
aggregated data  
in our custom file 
format.

1

2



Break down jobs into smaller pieces

35

Fault tolerance

Performance



Lessons

• Many clusters for better isolation.
• Break down jobs into smaller pieces.
• Trade-off between performance and fault tolerance.

36



1. Architecture
2. Monitoring
3. Failures handling

Highly reliable data pipelines

37



Cluster tagging

#rollups

#anomaly
-detection

38



Monitor cluster metrics

39



Monitor cluster metrics

40



Monitor cluster metrics

41



Monitor cluster metrics

42



Monitor work metrics

More details: datadoghq.com/blog/monitoring-spark/

43

https://www.datadoghq.com/blog/monitoring-spark/


Monitor work metrics

44



Monitor work metrics

45



Monitor work metrics

46



Monitor data lag

47

1 point/sec data lag

1 point/hour data lag



Lessons

• Measure, measure and measure!
• Alert on meaningful and actionable metrics.
• High level dashboards.

48



1. Architecture
2. Monitoring
3. Failures handling

Highly reliable data pipelines

49



50



Data pipelines will break

Hardware 
failures

Bad code 
changes

51

Upstream 
delays

Increasing 
volume of 

data



Data pipelines will break

1. Recover fast.
2. Degrade gracefully.

52



Recover fast

• No long running job.
• Switch from spot to on-demand clusters.
• Increase cluster size.

53



Recover fast: easy way to rerun jobs

• Needed when jobs run but produce some bad data.
• Not always trivial.

54



Example: rerun the rollups pipeline

2018-01

2018-02

2018-03

2018-04

2018-05

s3://bucket/

55



Example: rerun the rollups pipeline

as-of_2018-05-01

as-of_2018-05-02

...

as-of_2018-05-21

s3://bucket/2018-05/

56



Example: rerun the rollups pipeline

as-of_2018-05-01

as-of_2018-05-02

...

as-of_2018-05-21

s3://bucket/2018-05/

Active location

57



Example: rerun the rollups pipeline

as-of_2018-05-01

as-of_2018-05-02

...

as-of_2018-05-21

as-of_2018-05-22

s3://bucket/2018-05/

Active location

58



Example: rerun the rollups pipeline

as-of_2018-05-01

as-of_2018-05-02

...

as-of_2018-05-21

as-of_2018-05-22

s3://bucket/2018-05/

Active location

59



Example: rerun the rollups pipeline

as-of_2018-05-01

as-of_2018-05-02

...

as-of_2018-05-21

as-of_2018-05-22

s3://bucket/2018-05/

Active location

60



Example: rerun the rollups pipeline

as-of_2018-05-01

as-of_2018-05-02

...

as-of_2018-05-21

as-of_2018-05-22

as-of_2018-05-22_run-2

s3://bucket/2018-05/

Active location

61



Degrade

62

A

A

B

B

C

C

D

D

gracefully

• Isolate issues to a limited 
number of customers.

• Keep the functionalities 
operational at the cost of 
performance/accuracy.



Degrade gracefully: skip corrupted files

• Job failure caused by limited corrupted input data.
• Don’t ignore real widespread issues.

63



Lessons

• Think about potential issues ahead of time.
• Have knobs ready to recover fast.
• Have knobs ready to limit the customer facing impact.

64



Conclusion

65

Building highly reliable data pipelines



Conclusion

• Know your time constraints.

66

Building highly reliable data pipelines



Conclusion

• Know your time constraints.
• Break down jobs into small survivable pieces.

67

Building highly reliable data pipelines



Conclusion

• Know your time constraints.
• Break down jobs into small survivable pieces.
• Monitor cluster metrics, job metrics and data lags.

68

Building highly reliable data pipelines



Conclusion

• Know your time constraints.
• Break down jobs into small survivable pieces.
• Monitor cluster metrics, job metrics and data lags.
• Think about failures ahead of time and get prepared.

69

Building highly reliable data pipelines



Thanks!

We’re hiring!

qf@datadoghq.com
https://jobs.datadoghq.com

70

http://jobs.datadoghq.com/

