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Data Science +
Data Engineering

Reducing Inefficiencies in
Products or Services...




Example 1: Connect retailers to customers
DATA & ANALYTICS

Advertising Platform

Campaign manager

+1M Products

One Click Campaign

Designed for expansion™
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https://www.bbvadata.com/cost-effective-scalable-collaborative-filtering-based-recommender-system/




Example 2: Browse expenses more meaningfully

https://databricks.com/session/classiM'n Jin-production-for-banking



Example 3: Forecast Expenses



Behind the Scenes: Heteroscedastic Neural Network
Expense Forecasting Research

Real-world dataset of human expenses
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DATA & ANALYTICS
out...

Data Science Workflows
have inefficiencies
themselves



42,020 views | Mar 23, 2016, 09:33am

Cleaning Big Data: Most Time-
Consuming, Least Enjoyable Data
Science Task, Survey Says

! - Gil Press Contributor ®
I write about technology, entrepreneurs and innovation.

TWEET THIS

data scientists found that they spend most of their time massaging rather than mining or modeling data.

76% of data scientists view data preparation as the least enjoyable part of their work

DATA & ANALYTICS



We did document
The Real Data Science
Workflow
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Google Cloud AutoML enhances Al

Accessibility for all businesses
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Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine

learning pipelines using genetic programming.

DATA & ANALYTICS

m—— The Automatic Statistician

a An artificial intelligence for data science

Welcome to automatic exploratory data analysis

Making sense of data is one of the great challenges of the information age we live in. While it is becoming easier to collect
and store all kinds of data, from personal medical data, to scientific data, to public data, and commercial data, there are

MIT News

ON CAMPUS AND AROUND THE WORLD

Auto-tuning data science: New research streamlines
machine learning

A new automated machine-learning system performs as well or better than its human
counterparts — and works 100 times faster.




Towards Increased Data

Science Efficiency at
BBVA Data & Analytics
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client2vec:
Systematic Baselines



Shortcutting the
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Shortcutting the
Workflow
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Shortcutting the
Workflow...
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Systematic Baseline =

Generic entity representation
+ flexible & simple model



Do Generic Attributes Exist?
DATA & ANALYTICS
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word2vec: Embeddings of similar words are close together



Our Systematic Baseline
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DATA & ANALYTICS

Nearest neighbor
regression
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Learn to reconstruct corrupted
data

Reconstruction = similarity
Marginalized stacked denoising
autoencoders (Chen et al, ICML 2012)
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Group similar clients and By looking at similar clients,
compare their expenses in a guess whether a client had an
target category expense in a target category

Baldassini et al., client2vec: Towards Systematic Baselines for Banking Applications, arXiv, 2018
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Explore, evaluate and
generate

e State-of-the-art
algorithm

e Best performance in
our use cases

Deliver algorithmic solutions
as a

e Lightweight training
e \Works on bank’s
infrastructure

Generate to
accelerate product
development

Better method to
compare clients
Tools to evaluate
embedding methods
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Automatic Modeller:
Searching end-to-end
inear, interpretable models




Shortcutting the
Workflow...
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Pipeline to seek

- Linear Models
- “Interpretable” variable meanings

- Across multiple metrics (e.g. model quality vs number of features)

— O -0—-0

Statistical Test
Rejection

Discard variables with low-
potential

Hierarchical
Clustering

Group variables to seek
diversity

DATA & ANALYTICS

SFS &
Generic Algorithm

Find best combinations of
variables
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COMPARE & *
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o

Candidate models Logistic Curve Coefficients

ROC Curve
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e Tools to make data science projects more efficient
o Generic Customer Attributes
o Linear, Interpretable Model Construction

e Real tools available to Data Scientists & Data Engineers
e The philosophy somewhat experimental
o The “experiment” is ongoing and subject to important
checks: e.g. real reusability



DATA & ANALYTICS

Commoditization of ML algorithms is a reality

Speed-up for “mainstream” problems (image classification,
text classification)

Still a long tail of problems need very specific domain
knowledge and are not addressed by these tools (e.g.
classification of text in bank transactions, pricing, etc)

Still room for “commoditizing” internally
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Many thanks for providing insights & part of the contents:

Leonardo Baldassini
Roberto Maestre
Alberto Rubio
César de Pablo
Juan Arévalo

Axel Brando

Javier Lopez
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Questions?
Get in touch at “Office Hours” @ DataEngConf:

2:15 PM - 3:00 PM

Or visit bbvatada.com



