Weld: Accelerating Data
Science by 100x

Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker,
Parimajan Negi, Rahul Palamuttam, Anil Shanbhag*, Holger Pirk**, Malte
Schwarzkopf*, Saman Amarasinghe*, Sam Madden*, Matei Zaharia

Stanford DAWN, *MIT CSAIL, **Imperial College London

Motivation

Modern data applications combine many disjoint
processing libraries & functions

pendes Mol Wind @ (Bt ﬁNumPy

+ Great results leveraging work of 1000s of authors

Motivation

Modern data applications combine many disjoint
processing libraries & functions

pendes Mol Wind @ (Bt ﬁ NumPy

+ Great results leveraging work of 1000s of authors

— No optimization across functions

How Bad is This Problem?

Growing gap between memory/processing makes
traditional way of combining functions worse

data = pandas.parse_csv(string)
filtered = pandas.dropna(data)

avg = numpy.mean(filtered)

How Bad is This Problem?

Growing gap between memory/processing makes
traditional way of combining functions worse

e

data = pandas.parse_csv(string)
filtered = pandas.dropna(data)

avg = numpy.mean(filtered)

How Bad is This Problem?

Growing gap between memory/processing makes
traditional way of combining functions worse

e

data = pandas.parse_csv(string) lparse_csv

filtered = pandas.dropna(data) %

avg = numpy.mean(filtered)

How Bad is This Problem?

Growing gap between memory/processing makes
traditional way of combining functions worse

<

data = pandas.parse_csv(string) lparse_csv

filtered = pandas.dropna(data) m
l dropna

avg = numpy.mean(filtered) m

How Bad is This Problem?

Growing gap between memory/processing makes
traditional way of combining functions worse

<

data = pandas.parse_csv(string) lparse_csv

filtered = pandas.dropna(data) m
l dropna

avg = numpy.mean(filtered) m
l mean

How Bad is This Problem?

Growing gap between memory/processing makes
traditional way of combining functions worse

e

data = pandas.parse_csv(string) parse_csv

!
T
]

|

filtered = pandas.dropna(data)

avg = numpy.mean(filtered)

A

mean

Up to 30x slowdowns in NumPy, Pandas, TensorFlow, etc.
compared to an optimized C implementation

Data Science Today

Data scientists “pip install” libraries needed
for prototype/get the job done

Data Science Today

Data scientists “pip install” libraries needed
for prototype/get the job done

€

Observe performance issues in
pipelines composed of fast data
science tools

Data Science Today

Data scientists “pip install” libraries needed
for prototype/get the job done

€

Observe performance issues in
pipelines composed of fast data
science tools

o

Hire engineers to optimize your
pipeline, leverage new hardware, etc.

Data Science Today

Data scientists “pip install” libraries needed
for prototype/get the job done

€

Observe performance issues in
pipelines composed of fast data
science tools

¥

Hire engineers to optimize your
pipeline, leverage new hardware, etc.

Weld’s vision: bare metal performance for
data science out of the box!

Weld: An Optimizing Runtime

Runtime [secs; log10]
0.1 1 10 100

Filter Dataset > Compute a Linear Model -2 Aggregate Indices
Uses NumPy and Pandas (both backed by C)

Weld: An Optimizing Runtime

Runtime [secs; log10]
0.1 1 10 100

Native NumPy and Pandas

Weld: An Optimizing Runtime

Runtime [secs; log10]

0.1 1 10

- —

~3Xx Speedup from code generation
(SIMD instructions + other standard compiler optimizations)

Weld: An Optimizing Runtime

Runtime [secs; log10]
0.1 1 10

~8X Speedup from fusion within each library
(eliminates within-library memory movement)

Weld: An Optimizing Runtime

Runtime [secs; log10]
0.1 1 10

~29x Speedup from fusion across libraries library
(eliminates cross-library memory movement, co-optimizes library calls)

Weld: An Optimizing Runtime

Runtime [secs; log10]
0.1 1 10

~180x Speedup with automatic parallelization
(eliminates cross-library memory movement, co-optimizes library calls)

Weld Architecture

Weld Architecture

machine graph
SQL learning algorithms

\ /

Common Runtime

Weld Architecture

machine graph

SQL learning algorithms

\ /

Common Runtime

Weld Architecture

machine graph
SQL learning algorithms
T mme API
Welfj Weld IR
runtime > Optimizer
Backends

Intel, —<or
on X
€Ssor =

Rest of this Talk

Runtime API — How applications “speak” with
Weld

Weld IR — How applications express
computation

Results

Demo

Runtime API

Uses lazy evaluation to collect work across libraries

User Application

Weld Runtime
_ /
data - (data O ~ ‘ IR fragments
) item => (item) — for each function
Runtime
API
Combined IR
program

|
Data in Gl | 00| Optimized
Application 1Y) machine code

Without Weld

import itertools as it
squares = it.map(data, |x| X * Xx)
sum = sqrt(it.reduce(squares, 0, +))

data

Without Weld

import itertools as it
squares = it.map(data, |x| X * Xx)
sum = sqrt(it.reduce(squares, 0, +))

data squares

Without Weld

sum = sqrt(it.reduce(squares, 0, +))

data squares

sum

Each call reads/writes memory

With Weld

squares =

it.map(data,

IX] X * X)

WeldObject

map

With Weld

it.reduce(squares, 0, +)

WeldObject

map

reduce

With Weld

sum = sqrt(

WeldObject

map reduce sqrt

With Weld

import itertools as it
squares = it.map(data, |x| X * Xx)
sum = sqrt(it.reduce(squares, 0, +))

WeldObject

Optimized Program

map reduce

sqrt sqrt(reduce(..))

Evaluate the optimized program once

sum

Weld IR: Expressing
Computations

Designed to meet three goals:

1. Generality
support diverse workloads and nested calls

2. Ability to express optimizations
e.g., loop fusion, vectorization, and loop tiling

3. Explicit parallelism and targeting parallel
hardware

Weld IR: Internals

Small IR* with only two main constructs.
Parallel loops: iterate over a dataset

Builders: declarative objects for producing results
» E.g., append items to a list, compute a sum
» Can be implemented differently on different hardware

Weld IR: Internals

Small IR* with only two main constructs.
Parallel loops: iterate over a dataset

Builders: declarative objects for producing results
» E.g., append items to a list, compute a sum
» Can be implemented differently on different hardware

Captures relational algebra, functional APIs like
Spark, linear algebra, and composition thereof

Examples: Functional Ops

Examples: Functional Ops

Functional operators using builders

def map(data, f):
builder = new appender[i32]
for x in data:

merge(builder, f(x))
result(builder)

Examples: Functional Ops

Functional operators using builders

def map(data, f):
builder = new appender[i32]
for x in data:
merge(builder, f(x))
result(builder)

def reduce(data, zero, func):
builder = new merger[zero, func]
for x in data:
merge(builder, x)
result(builder)

Example Optimizations

squares = map(data, |x| x * Xx)
sum = reduce(data, 0, +)

!

bldl = new appender[i32]

bld2 = new merger[@, +]

for x: simd[i32] in data:
merge(bldl, x * Xx)
merge(bld2, x)

Loops can be merged into one pass over data
and vectorized

Other Features

Interactive REPL for debugging Weld programs
Serialization/Deserialization operators for Weld data

Configurable memory limit and thread limit

Trace Mode for tracing execution at runtime to catch bugs

Rich logging for easy debugging

Utilities for generating C bindings to pass data into Weld

C UDF Support for calling arbitrary C functions

Ability to Dump Code for debugging

Syntax Highlighting support for Vim

Type Inference in Weld IR to simplify writing code manually for testing

Implementation

Implementation

APIs in C and Python (with Java coming soon)
* Full LLVM-based CPU backend SIMD support

Written in ~30K lines of Rust, LLVM, C++
* Fast, safe native language with no runtime

Implementation

APIs in C and Python (with Java coming soon)
* Full LLVM-based CPU backend SIMD support

Written in ~30K lines of Rust, LLVM, C++
* Fast, safe native language with no runtime

Partial Prototypes of Pandas, NumPy,
TensorFlow and Apache Spark

pances Mul¥ind ¥ Tensor

Grizzly

A subset of Pandas integrated with Weld

Operators include unique, filter, mask, group by,
pivot table

Transparent single-core and multi-core speedups

Interoperates with Pandas with same API

Grizzly in Action

http://pandas.pydata.org/pandas-docs/stable/tutorials.html

Grizzly in Action

import pandas as pd
requests = pd.read_csv(‘filename.csv’)
requests['Incident Zip'] = requests['Incident Zip'].str.slice(0, 5)

zero_zips = requests|['Incident Zip'] == '00000°’
requests['Incident Zip'l[zero_zips] = np.nan

print requests['Incident Zip'l.unique()

http://pandas.pydata.org/pandas-docs/stable/tutorials.html

Grizzly in Action

import pandas as pd
import grizzly as gr Pandas for I/O

requests = gr.DataFrameWeld(pd.read_csv(‘filename.csv’))

requests['Incident Zip'] = requests['Incident Zip'].str.slice(0, 5)

zero_zips = requests|['Incident Zip'] == '00000°’
requests['Incident Zip'l[zero_zips] = np.nan

print requests['Incident Zip'l.unique()

http://pandas.pydata.org/pandas-docs/stable/tutorials.html

Integration Effort

Integration Effort

Small up front cost to enable Weld integration
* 500 LoC for each library we prototyped

Integration Effort

Small up front cost to enable Weld integration
* 500 LoC for each library we prototyped

Easy to port over each operator
* 30 LoC each

Integration Effort

Small up front cost to enable Weld integration
* 500 LoC for each library we prototyped

Easy to port over each operator
* 30 LoC each

Incrementally Deployable
* Weld-enabled ops work with native ops

Weld Accelerates Existing Libraries

Weld Accelerates Existing Libraries

40 | Unmod. SparkSQL s |
Weld s |

TPC-H Q1 TPC-H Q6

.S'pcwr‘ll(\Z SQL

TPC-H:
3.5x speedup

Weld Accelerates Existing Libraries

40 | Unmod. SparkSQL s |

Runtime [secs; log10]

TPC-H Q1 TPC-H Q6 NumPy = Weld 12T =

Spar‘l’(\Z SQL

TPC-H: Black Scholes:
3.5x speedup 4.5x speedup

Weld Accelerates Existing Libraries

40 | Unmod. SparkSQL s |

TPC-H Q1 TPC-H Q6

Spor‘l'(\z SQL

TPC-H:
3.5x speedup

Runtime [secs; log10]

©
—

NumPy == Weld 12T ==
Weld 1T ==

Black Scholes:
4.5x speedup

1000

100

—_
o

Runtime [secs; log10]

—

1T 12T
Number of threads

¥ TensorFlow

Logistic Regression:
Competitive
with XLA

Weld Accelerates Multi-Library Workflows

Weld Accelerates Multi-Library Workflows

Runtime [secs; log10]
w1 2 ™ Datacleaning + lin.
| = alg. with Pandas +

NumPy: 180x

speedup

Weld Accelerates Multi-Library Workflows

Runtime [secs; log10]
w1 2 ™ Datacleaning + lin.
| = alg. with Pandas +

NumPy: 180x

speedup

Native

(1T)
No Fusion (1T

(

(

)
T) |

1
1
1

No CLO

Weld (1T)
Weld (12T)

90
80
E??O
ﬁ. 60
o 90
£ 40
§ 30
c 20
10
0

1T 12T

Image whitening + linear
regression with TensorFlow +
NumPy: 8.9x speedup

Weld Accelerates Multi-Library Workflows

Runtime [secs; log10]

0.1 1

Native (1T)
17
1

No CLO (1T) |

(
No Fusion (1T)

(

(

Weld (1T)
Weld (12T)

100

90
80
E??O
ﬁ. 60
o 90
£ 40
7__5; 30
c 20
10
0

1T 12T

Image whitening + linear
regression with TensorFlow +
NumPy: 8.9x speedup

Data cleaning + lin.

| « alg. with Pandas +

NumPy: 180x
speedup

Python UDF s |
1000 | Scala UDF mmmmm |

o
—h

Linear model eval. with Spark
SQL UDF: 6x speedup

Incremental Integration

20N 20N T T T 1
__ 18 18 NumPy s
% 16 Q16 [Weld mm
o 14 © 14 [|
o 15 P11
s 8 s 8
c c
T 4 T 4

; ;

012345678 012345678

Number of operators Number of operators

Incremental Integration

20 [20 [[[[[[[I I

18 18y NumPy D -
‘% 16 @16 Weld -
o 14 o 14f s
2 13 P *
s 8 s 8 f
[c
T 4 T 4

: :

0012345678 0123 456 78

Number of operators Number of operators

Implementing more operators

Incremental Integration

20 20
7 7
n n
3 14 S 14
=12 2 12
€8 E's
c 6 c 6
T 4 T 4

: :

0123 45606 7 8 012345606 7 8
Number of operators Number of operators

Implementing more operators

NumPy Black Scholes workload:
Incremental benefits with incremental integration.

Demo.

Conclusion

Changing the interface between libraries can speed up
data analytics applications by 10-100x on modern
hardware

Try out Weld for yourself, or contribute!

https://www.github.com/weld-project

https://www.weld.rs

NEK,
$ pip install pyweld N<
$ pip install pygrizzly

$ pip install weldnumpy s
|

