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How Bad is This Problem?

Growing gap between memory/processing makes
traditional way of combining functions worse

e

data = pandas.parse_csv(string) parse_csv
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filtered = pandas.dropna(data)

avg = numpy.mean(filtered)
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mean

Up to 30x slowdowns in NumPy, Pandas, TensorFlow, etc.
compared to an optimized C implementation
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Observe performance issues in
pipelines composed of fast data
science tools

¥

Hire engineers to optimize your
pipeline, leverage new hardware, etc.

Weld’s vision: bare metal performance for
data science out of the box!



Weld: An Optimizing Runtime

Runtime [secs; log10]
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Filter Dataset > Compute a Linear Model -2 Aggregate Indices
Uses NumPy and Pandas (both backed by C)
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Runtime [secs; log10]
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~3Xx Speedup from code generation
(SIMD instructions + other standard compiler optimizations)
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Weld: An Optimizing Runtime

Runtime [secs; log10]
0.1 1 10

~180x Speedup with automatic parallelization
(eliminates cross-library memory movement, co-optimizes library calls)
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Weld Architecture

machine graph
SQL learning algorithms
T mme API
Welfj Weld IR
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Rest of this Talk

Runtime API — How applications “speak” with
Weld

Weld IR — How applications express
computation

Results

Demo



Runtime API

Uses lazy evaluation to collect work across libraries

User Application

Weld Runtime
_ /
data - (data O ~ ‘ IR fragments
) item => (item) — for each function
Runtime
API
Combined IR
program

|
Data in Gl | 00| Optimized
Application 1Y) machine code
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sum = sqrt(it.reduce(squares, 0, +))

data squares

sum

Each call reads/writes memory




With Weld

squares =

it.map(data,

IX] X * X)

WeldObject

map
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it.reduce(squares, 0, +)

WeldObject

map

reduce
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With Weld

import itertools as it
squares = it.map(data, |x| X * Xx)
sum = sqrt(it.reduce(squares, 0, +))

WeldObject

Optimized Program

map reduce

sqrt sqrt(reduce(..))

Evaluate the optimized program once

sum



Weld IR: Expressing
Computations

Designed to meet three goals:

1. Generality
support diverse workloads and nested calls

2. Ability to express optimizations
e.g., loop fusion, vectorization, and loop tiling

3. Explicit parallelism and targeting parallel
hardware



Weld IR: Internals

Small IR* with only two main constructs.
Parallel loops: iterate over a dataset

Builders: declarative objects for producing results
» E.g., append items to a list, compute a sum
» Can be implemented differently on different hardware
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Small IR* with only two main constructs.
Parallel loops: iterate over a dataset

Builders: declarative objects for producing results
» E.g., append items to a list, compute a sum
» Can be implemented differently on different hardware

Captures relational algebra, functional APIs like
Spark, linear algebra, and composition thereof
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Examples: Functional Ops

Functional operators using builders

def map(data, f):
builder = new appender[i32]
for x in data:
merge(builder, f(x))
result(builder)

def reduce(data, zero, func):
builder = new merger[zero, func]
for x in data:
merge(builder, x)
result(builder)



Example Optimizations

squares = map(data, |x| x * Xx)
sum = reduce(data, 0, +)

!

bldl = new appender[i32]

bld2 = new merger[@, +]

for x: simd[i32] in data:
merge(bldl, x * Xx)
merge(bld2, x)

Loops can be merged into one pass over data
and vectorized



Other Features

Interactive REPL for debugging Weld programs
Serialization/Deserialization operators for Weld data

Configurable memory limit and thread limit

Trace Mode for tracing execution at runtime to catch bugs

Rich logging for easy debugging

Utilities for generating C bindings to pass data into Weld

C UDF Support for calling arbitrary C functions

Ability to Dump Code for debugging

Syntax Highlighting support for Vim

Type Inference in Weld IR to simplify writing code manually for testing
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APIs in C and Python (with Java coming soon)
* Full LLVM-based CPU backend SIMD support

Written in ~30K lines of Rust, LLVM, C++
* Fast, safe native language with no runtime



Implementation

APIs in C and Python (with Java coming soon)
* Full LLVM-based CPU backend SIMD support

Written in ~30K lines of Rust, LLVM, C++
* Fast, safe native language with no runtime

Partial Prototypes of Pandas, NumPy,
TensorFlow and Apache Spark

pances Mul¥ind ¥ Tensor




Grizzly

A subset of Pandas integrated with Weld

Operators include unique, filter, mask, group by,
pivot table

Transparent single-core and multi-core speedups

Interoperates with Pandas with same API



Grizzly in Action

http://pandas.pydata.org/pandas-docs/stable/tutorials.html




Grizzly in Action

import pandas as pd
requests = pd.read_csv(‘filename.csv’)
requests['Incident Zip'] = requests['Incident Zip'].str.slice(0, 5)

zero_zips = requests|['Incident Zip'] == '00000°’
requests['Incident Zip'l[zero_zips] = np.nan

print requests['Incident Zip'l.unique()

http://pandas.pydata.org/pandas-docs/stable/tutorials.html




Grizzly in Action

import pandas as pd
import grizzly as gr Pandas for I/O

requests = gr.DataFrameWeld(pd.read_csv(‘filename.csv’))

requests['Incident Zip'] = requests['Incident Zip'].str.slice(0, 5)

zero_zips = requests|['Incident Zip'] == '00000°’
requests['Incident Zip'l[zero_zips] = np.nan

print requests['Incident Zip'l.unique()

http://pandas.pydata.org/pandas-docs/stable/tutorials.html
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Integration Effort

Small up front cost to enable Weld integration
* 500 LoC for each library we prototyped

Easy to port over each operator
* 30 LoC each

Incrementally Deployable
* Weld-enabled ops work with native ops
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Weld Accelerates Existing Libraries

40 | Unmod. SparkSQL s |

TPC-H Q1 TPC-H Q6

Spor‘l'(\z SQL

TPC-H:
3.5x speedup
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Logistic Regression:
Competitive
with XLA
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Data cleaning + lin.
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NumPy: 180x
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Linear model eval. with Spark
SQL UDF: 6x speedup
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Incremental Integration
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Implementing more operators

NumPy Black Scholes workload:
Incremental benefits with incremental integration.



Demo.



Conclusion

Changing the interface between libraries can speed up
data analytics applications by 10-100x on modern
hardware

Try out Weld for yourself, or contribute!

https://www.github.com/weld-project

https://www.weld.rs

NEK,
$ pip install pyweld N<
$ pip install pygrizzly

$ pip install weldnumpy s
|



