
Weld: Accelerating Data
Science by 100x

Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker,
Parimajan Negi, Rahul Palamuttam, Anil Shanbhag*, Holger Pirk**, Malte

Schwarzkopf*, Saman Amarasinghe*, Sam Madden*, Matei Zaharia

Stanford DAWN, *MIT CSAIL, **Imperial College London

www.weld.rs

Motivation

Modern data applications combine many disjoint
processing libraries & functions

+ Great results leveraging work of 1000s of authors

Motivation

Modern data applications combine many disjoint
processing libraries & functions

+ Great results leveraging work of 1000s of authors

– No optimization across functions

How Bad is This Problem?
Growing gap between memory/processing makes
traditional way of combining functions worse

data = pandas.parse_csv(string)

filtered = pandas.dropna(data)

avg = numpy.mean(filtered)

How Bad is This Problem?
Growing gap between memory/processing makes
traditional way of combining functions worse

data = pandas.parse_csv(string)

filtered = pandas.dropna(data)

avg = numpy.mean(filtered)

How Bad is This Problem?
Growing gap between memory/processing makes
traditional way of combining functions worse

data = pandas.parse_csv(string)

filtered = pandas.dropna(data)

avg = numpy.mean(filtered)

parse_csv

How Bad is This Problem?
Growing gap between memory/processing makes
traditional way of combining functions worse

data = pandas.parse_csv(string)

filtered = pandas.dropna(data)

avg = numpy.mean(filtered)

parse_csv

dropna

How Bad is This Problem?
Growing gap between memory/processing makes
traditional way of combining functions worse

data = pandas.parse_csv(string)

filtered = pandas.dropna(data)

avg = numpy.mean(filtered)

parse_csv

dropna

mean

How Bad is This Problem?
Growing gap between memory/processing makes
traditional way of combining functions worse

data = pandas.parse_csv(string)

filtered = pandas.dropna(data)

avg = numpy.mean(filtered)

parse_csv

dropna

mean

Up to 30x slowdowns in NumPy, Pandas, TensorFlow, etc.
compared to an optimized C implementation

Data Science Today
Data scientists “pip install” libraries needed

for prototype/get the job done

Data Science Today
Data scientists “pip install” libraries needed

for prototype/get the job done

Observe performance issues in
pipelines composed of fast data

science tools

Data Science Today
Data scientists “pip install” libraries needed

for prototype/get the job done

Observe performance issues in
pipelines composed of fast data

science tools

Hire engineers to optimize your
pipeline, leverage new hardware, etc.

Data Science Today

Weld’s vision: bare metal performance for
data science out of the box!

Data scientists “pip install” libraries needed
for prototype/get the job done

Observe performance issues in
pipelines composed of fast data

science tools

Hire engineers to optimize your
pipeline, leverage new hardware, etc.

Weld: An Optimizing Runtime

 0.1 1 10 100

Native (1T)

No Fusion (1T)

No CLO (1T)

Weld (1T)

Weld (12T)

Runtime [secs; log10]

Filter Dataset à Compute a Linear Model à Aggregate Indices
Uses NumPy and Pandas (both backed by C)

Weld: An Optimizing Runtime

 0.1 1 10 100

Native (1T)

No Fusion (1T)

No CLO (1T)

Weld (1T)

Weld (12T)

Runtime [secs; log10]

Filter Dataset à Compute a Linear Model à Aggregate Indices
Uses NumPy and Pandas (both backed by C)

Native NumPy and Pandas

Weld: An Optimizing Runtime

 0.1 1 10 100

Native (1T)

No Fusion (1T)

No CLO (1T)

Weld (1T)

Weld (12T)

Runtime [secs; log10]

Filter Dataset à Compute a Linear Model à Aggregate Indices
Uses NumPy and Pandas (both backed by C)

~3x Speedup from code generation
(SIMD instructions + other standard compiler optimizations)

Weld: An Optimizing Runtime

 0.1 1 10 100

Native (1T)

No Fusion (1T)

No CLO (1T)

Weld (1T)

Weld (12T)

Runtime [secs; log10]

Filter Dataset à Compute a Linear Model à Aggregate Indices
Uses NumPy and Pandas (both backed by C)

~8x Speedup from fusion within each library
(eliminates within-library memory movement)

Weld: An Optimizing Runtime

 0.1 1 10 100

Native (1T)

No Fusion (1T)

No CLO (1T)

Weld (1T)

Weld (12T)

Runtime [secs; log10]

Filter Dataset à Compute a Linear Model à Aggregate Indices
Uses NumPy and Pandas (both backed by C)

~29x Speedup from fusion across libraries library
(eliminates cross-library memory movement, co-optimizes library calls)

Weld: An Optimizing Runtime

 0.1 1 10 100

Native (1T)

No Fusion (1T)

No CLO (1T)

Weld (1T)

Weld (12T)

Runtime [secs; log10]

Filter Dataset à Compute a Linear Model à Aggregate Indices
Uses NumPy and Pandas (both backed by C)
~180x Speedup with automatic parallelization

(eliminates cross-library memory movement, co-optimizes library calls)

Weld Architecture

Weld Architecture

machine
learningSQL graph

algorithms

Common Runtime

…

Weld Architecture

machine
learningSQL graph

algorithms

CPU GPU

…

Common Runtime

…

Weld Architecture

machine
learningSQL graph

algorithms

CPU GPU

…

…

Weld IR

Backends

Runtime API

Optimizer
Weld
runtime

Rest of this Talk

Runtime API – How applications “speak” with
Weld

Weld IR – How applications express
computation

Results

Demo

www.weld.rs

Runtime API
Uses lazy evaluation to collect work across libraries

data = lib1.f1()
lib2.map(data,

item => lib3.f2(item)
)

User Application Weld Runtime

Combined IR
program

Optimized
machine code

1101110
0111010
1101111

IR fragments
for each function

Runtime
API

f1

map

f2

Data in
Application

Without Weld
import itertools as it
squares = it.map(data, |x| x * x)
sum = sqrt(it.reduce(squares, 0, +))

data

Without Weld
import itertools as it
squares = it.map(data, |x| x * x)
sum = sqrt(it.reduce(squares, 0, +))

data squares

Without Weld
import itertools as it
squares = it.map(data, |x| x * x)
sum = sqrt(it.reduce(squares, 0, +))

data squares

sum

Each call reads/writes memory

With Weld
import itertools as it
squares = it.map(data, |x| x * x)
sum = sqrt(it.reduce(squares, 0, +))

map

WeldObject

With Weld
import itertools as it
squares = it.map(data, |x| x * x)
sum = sqrt(it.reduce(squares, 0, +))

map reduce

WeldObject

With Weld
import itertools as it
squares = it.map(data, |x| x * x)
sum = sqrt(it.reduce(squares, 0, +))

map reduce

WeldObject

sqrt

With Weld
import itertools as it
squares = it.map(data, |x| x * x)
sum = sqrt(it.reduce(squares, 0, +))

map reduce

WeldObject

sqrt

Optimized Program

sqrt(reduce(…))

sum

Evaluate the optimized program once

Weld IR: Expressing
Computations
Designed to meet three goals:

1. Generality
support diverse workloads and nested calls

2. Ability to express optimizations
e.g., loop fusion, vectorization, and loop tiling

3. Explicit parallelism and targeting parallel
hardware

Weld IR: Internals
Small IR* with only two main constructs.

Parallel loops: iterate over a dataset

Builders: declarative objects for producing results
» E.g., append items to a list, compute a sum
» Can be implemented differently on different hardware

Weld IR: Internals
Small IR* with only two main constructs.

Parallel loops: iterate over a dataset

Builders: declarative objects for producing results
» E.g., append items to a list, compute a sum
» Can be implemented differently on different hardware

Captures relational algebra, functional APIs like
Spark, linear algebra, and composition thereof

Examples: Functional Ops

Examples: Functional Ops

Functional operators using builders

def map(data, f):
builder = new appender[i32]
for x in data:

merge(builder, f(x))
result(builder)

Examples: Functional Ops

Functional operators using builders

def map(data, f):
builder = new appender[i32]
for x in data:

merge(builder, f(x))
result(builder)

def reduce(data, zero, func):
builder = new merger[zero, func]
for x in data:

merge(builder, x)
result(builder)

Example Optimizations
squares = map(data, |x| x * x)
sum = reduce(data, 0, +)

bld1 = new appender[i32]
bld2 = new merger[0, +]
for x: simd[i32] in data:

merge(bld1, x * x)
merge(bld2, x)

Loops can be merged into one pass over data
and vectorized

Other Features
Interactive REPL for debugging Weld programs
Serialization/Deserialization operators for Weld data
Configurable memory limit and thread limit
Trace Mode for tracing execution at runtime to catch bugs
Rich logging for easy debugging
Utilities for generating C bindings to pass data into Weld
C UDF Support for calling arbitrary C functions
Ability to Dump Code for debugging
Syntax Highlighting support for Vim
Type Inference in Weld IR to simplify writing code manually for testing

Implementation

Implementation
APIs in C and Python (with Java coming soon)
• Full LLVM-based CPU backend SIMD support

Written in ~30K lines of Rust, LLVM, C++
• Fast, safe native language with no runtime

Implementation

Partial Prototypes of Pandas, NumPy,
TensorFlow and Apache Spark

APIs in C and Python (with Java coming soon)
• Full LLVM-based CPU backend SIMD support

Written in ~30K lines of Rust, LLVM, C++
• Fast, safe native language with no runtime

Grizzly

A subset of Pandas integrated with Weld
Operators include unique, filter, mask, group_by,
pivot_table

Transparent single-core and multi-core speedups

Interoperates with Pandas with same API

Grizzly in Action

Adapted from http://pandas.pydata.org/pandas-docs/stable/tutorials.html (chapter 7)

Grizzly in Action
import pandas as pd

Read dataframe from file
requests = pd.read_csv(‘filename.csv’)

Fix requests with extra digits
requests['Incident Zip'] = requests['Incident Zip'].str.slice(0, 5)

Fix requests with 00000 zipcodes
zero_zips = requests['Incident Zip'] == '00000’
requests['Incident Zip'][zero_zips] = np.nan

Display unique incident zips
print requests['Incident Zip'].unique()

Adapted from http://pandas.pydata.org/pandas-docs/stable/tutorials.html (chapter 7)

Grizzly in Action
import pandas as pd
import grizzly as gr

Read dataframe from file
requests = gr.DataFrameWeld(pd.read_csv(‘filename.csv’))

Fix requests with extra digits
requests['Incident Zip'] = requests['Incident Zip'].str.slice(0, 5)

Fix requests with 00000 zipcodes
zero_zips = requests['Incident Zip'] == '00000’
requests['Incident Zip'][zero_zips] = np.nan

Display unique incident zips
print requests['Incident Zip'].unique()

Adapted from http://pandas.pydata.org/pandas-docs/stable/tutorials.html (chapter 7)

Pandas for I/O

Integration Effort

Integration Effort

Small up front cost to enable Weld integration
• 500 LoC for each library we prototyped

Integration Effort

Small up front cost to enable Weld integration
• 500 LoC for each library we prototyped

Easy to port over each operator
• 30 LoC each

Integration Effort

Small up front cost to enable Weld integration
• 500 LoC for each library we prototyped

Easy to port over each operator
• 30 LoC each

Incrementally Deployable
• Weld-enabled ops work with native ops

Weld Accelerates Existing Libraries

Weld Accelerates Existing Libraries

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

TPC-H Q1 TPC-H Q6

R
u
n
tim

e
 [
se

cs
]

Unmod. SparkSQL
Weld

TPC-H:
3.5x speedup

Weld Accelerates Existing Libraries

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

TPC-H Q1 TPC-H Q6

R
u
n
tim

e
 [
se

cs
]

Unmod. SparkSQL
Weld

TPC-H:
3.5x speedup

 0.1

 1

 10

 100

R
u

n
tim

e
 [

se
cs

;
lo

g
1

0
]

NumPy
Weld 1T

Weld 12T

Black Scholes:
4.5x speedup

Weld Accelerates Existing Libraries

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

TPC-H Q1 TPC-H Q6

R
u
n
tim

e
 [
se

cs
]

Unmod. SparkSQL
Weld

TPC-H:
3.5x speedup

 0.1

 1

 10

 100

R
u

n
tim

e
 [

se
cs

;
lo

g
1

0
]

NumPy
Weld 1T

Weld 12T

Black Scholes:
4.5x speedup

 1

 10

 100

 1000

1T 12T

R
u
n
tim

e
 [
se

cs
;
lo

g
1
0
]

Number of threads

TF
TF + XLA

Weld

Logistic Regression:
Competitive

with XLA

Weld Accelerates Multi-Library Workflows

Weld Accelerates Multi-Library Workflows

 0.1 1 10 100

Native (1T)

No Fusion (1T)

No CLO (1T)

Weld (1T)

Weld (12T)

Runtime [secs; log10]

Data cleaning + lin.
alg. with Pandas +
NumPy: 180x
speedup

Weld Accelerates Multi-Library Workflows

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

1T 12T

R
u
n
tim

e
 [
se

cs
]

TF
TF + XLA

NumPy
Weld

Image whitening + linear
regression with TensorFlow +
NumPy: 8.9x speedup

 0.1 1 10 100

Native (1T)

No Fusion (1T)

No CLO (1T)

Weld (1T)

Weld (12T)

Runtime [secs; log10]

Data cleaning + lin.
alg. with Pandas +
NumPy: 180x
speedup

Weld Accelerates Multi-Library Workflows

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

1T 12T

R
u
n
tim

e
 [
se

cs
]

TF
TF + XLA

NumPy
Weld

Image whitening + linear
regression with TensorFlow +
NumPy: 8.9x speedup

 0.1

 1

 10

 100

 1000

 10000

R
u
n
tim

e
 [
se

cs
;
lo

g
1
0
]

Python UDF
Scala UDF

Weld

Linear model eval. with Spark
SQL UDF: 6x speedup

 0.1 1 10 100

Native (1T)

No Fusion (1T)

No CLO (1T)

Weld (1T)

Weld (12T)

Runtime [secs; log10]

Data cleaning + lin.
alg. with Pandas +
NumPy: 180x
speedup

Incremental Integration

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

0 1 2 3 4 5 6 7 8

R
u
n
tim

e
 [
se

cs
]

Number of operators

NumPy
Weld

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

0 1 2 3 4 5 6 7 8

R
u
n
tim

e
 [
se

cs
]

Number of operators

NumPy
Weld

Incremental Integration

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

0 1 2 3 4 5 6 7 8

R
u
n
tim

e
 [
se

cs
]

Number of operators

NumPy
Weld

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

0 1 2 3 4 5 6 7 8

R
u
n
tim

e
 [
se

cs
]

Number of operators

NumPy
Weld

Implementing more operators

Incremental Integration

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

0 1 2 3 4 5 6 7 8

R
u
n
tim

e
 [
se

cs
]

Number of operators

NumPy
Weld

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

0 1 2 3 4 5 6 7 8

R
u
n
tim

e
 [
se

cs
]

Number of operators

NumPy
Weld

NumPy Black Scholes workload:
Incremental benefits with incremental integration.

Implementing more operators

Demo.

Conclusion
Changing the interface between libraries can speed up
data analytics applications by 10-100x on modern
hardware

Try out Weld for yourself, or contribute!

https://www.github.com/weld-project

https://www.weld.rs

$ pip install pyweld
$ pip install pygrizzly
$ pip install weldnumpy

