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Outline
• ML at Stripe! 
• The reality of features 
• Our approach 
• How we run it



Stripe



Real World ML (@Stripe)
• Stripe provides a toolkit to start and run an 
internet business 

• Need to make decisions quickly and at scale. 
• Our actions affect real businesses. 









Improving our operations



A fiction about ML

We have a beautiful table of data: 
a tall matrix that represents 
Ground Truth about Reality.



A fiction about ML





Reality
Feature engineering: turn a 
giant pile of serialized data into 
a sane matrix to feed to a 
training algorithm.





Key challenges
• There are many different data stores and event streams. How do 
we integrate them? 
• How to produce a historical view of state when a prediction 
would have been made? Time-aware joins are easy to get wrong. 
• How to prevent “label leakage” with labels leaking into training 
data? 
• How to make sure data for training is consistent with data for 
scoring? 
• How to share code to generate data for training and scoring?



Training on future data
Feature idea: fraud rate by e-mail!

kelley@stripe.com makes a charge on business A

kelley@stripe.com makes a charge on business B

Both charges disputed as fraud!!

Compute fraud rates
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Features are used in rules, too!



Features and events



The input matrix to models are Features attached to Events 

• At an event, we can lookup a 
feature value (which exists at all 
times) 

• With the event and the feature we 
can either train or evaluate 

We require all data inputs to be 
evented data.



Core types: Event, Feature
Events are things that 
pop out of Kafka! 

Features are about a 
subject of type K. We 
can partition updates to 
feature by the K, e.g. 
K=user, merchant, 
tweetid, contentid, etc...



Feature.map creates new columns from old 

• E.g. from Feature[Merchant, 
(TotalChargeCount, 
TotalChargeAmount)] we can 
use .map to get average 
charge amount.



Event.lookup reads Features



Event.lookup reads Features 

When generating training 
data, it is critical that the 
events see the value of the 
feature as it was at the 
event’s time.

•  very tedious to do by hand.  

•  keeping this declarative the 
system can manage these 
lookups correctly. 

•  Call this “temporal consistency” 



Example features



But how do you actually run it?
• Once we have the AST, we have several backends that can evaluate 
a feature, either a total history or evaluate at a point in time, given 
the Event source 

• E.g. interpreter, map/reduce-like backend, push-based realtime 
backend



Map/reduce-like backend



Do you use it?
• Yes! We use this to generate, e.g., features that score our fraud 
models 

• The most complex graphs have around 1400 feature/event nodes. 

• We can update features for very complex feature graphs in around 
60ms p99 which can involve updating more than 100 keys.



How does it fit together?



Summary
• This system gives a minimal and principled API for feature engineers. 

• The principled nature means the backend system has a lot of power to 
optimize or run in different environments (easy to change how we compute, 
without changing what we compute). 

• Solves the problem of separating business logic completely from the 
implementation details. 

•Frees the feature engineer from having to worry about temporal consistency. 



Come work with me!
• Stripe is hiring for a lot of interesting data and ML roles! 

• We use data technology to track and move money. 

• We are building state-of-the-art ML infrastructure for feature 
engineering, model training and evaluation. 



Special thanks to Oscar Boykin, Erik Osheim, Sam Ritchie, Travis 
Brown 

Machine Learning Infrastructure @Stripe

Thanks!


