
Define Once, Evaluate
Anywhere
Building Repeatable and Correct Features at Stripe

Kelley Rivoire
Data @Stripe

Outline
• ML at Stripe!
• The reality of features
• Our approach
• How we run it

Stripe

Real World ML (@Stripe)
• Stripe provides a toolkit to start and run an
internet business

• Need to make decisions quickly and at scale.
• Our actions affect real businesses.

Improving our operations

A fiction about ML

We have a beautiful table of data:
a tall matrix that represents
Ground Truth about Reality.

A fiction about ML

Reality
Feature engineering: turn a
giant pile of serialized data into
a sane matrix to feed to a
training algorithm.

Key challenges
• There are many different data stores and event streams. How do
we integrate them?
• How to produce a historical view of state when a prediction
would have been made? Time-aware joins are easy to get wrong.
• How to prevent “label leakage” with labels leaking into training
data?
• How to make sure data for training is consistent with data for
scoring?
• How to share code to generate data for training and scoring?

Training on future data
Feature idea: fraud rate by e-mail!

kelley@stripe.com makes a charge on business A

kelley@stripe.com makes a charge on business B

Both charges disputed as fraud!!

Compute fraud rates

mailto:kelley@stripe.com
mailto:kelley@stripe.com

Features are used in rules, too!

Features and events

The input matrix to models are Features attached to Events

• At an event, we can lookup a
feature value (which exists at all
times)

• With the event and the feature we
can either train or evaluate 

We require all data inputs to be
evented data.

Core types: Event, Feature
Events are things that
pop out of Kafka!

Features are about a
subject of type K. We
can partition updates to
feature by the K, e.g.
K=user, merchant,
tweetid, contentid, etc...

Feature.map creates new columns from old

• E.g. from Feature[Merchant,
(TotalChargeCount,
TotalChargeAmount)] we can
use .map to get average
charge amount.

Event.lookup reads Features

Event.lookup reads Features

When generating training
data, it is critical that the
events see the value of the
feature as it was at the
event’s time.

• very tedious to do by hand.

• keeping this declarative the
system can manage these
lookups correctly.

• Call this “temporal consistency”

Example features

But how do you actually run it?
• Once we have the AST, we have several backends that can evaluate
a feature, either a total history or evaluate at a point in time, given
the Event source

• E.g. interpreter, map/reduce-like backend, push-based realtime
backend

Map/reduce-like backend

Do you use it?
• Yes! We use this to generate, e.g., features that score our fraud
models

• The most complex graphs have around 1400 feature/event nodes.

• We can update features for very complex feature graphs in around
60ms p99 which can involve updating more than 100 keys.

How does it fit together?

Summary
• This system gives a minimal and principled API for feature engineers.

• The principled nature means the backend system has a lot of power to
optimize or run in different environments (easy to change how we compute,
without changing what we compute).

• Solves the problem of separating business logic completely from the
implementation details.

•Frees the feature engineer from having to worry about temporal consistency. 

Come work with me!
• Stripe is hiring for a lot of interesting data and ML roles!

• We use data technology to track and move money.

• We are building state-of-the-art ML infrastructure for feature
engineering, model training and evaluation.

Special thanks to Oscar Boykin, Erik Osheim, Sam Ritchie, Travis
Brown

Machine Learning Infrastructure @Stripe

Thanks!

