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Recommendations at Netflix

Personalized Homepage for each member

○ Goal: Quickly help members find content they’d like to 

watch

○ Risk:  Member may lose interest and abandon the service

○ Challenge:  117M+ members 

○ Recommendations Valued at: $1B*

*Carlos A. Gomez-Uribe, Neil Hunt: The Netflix Recommender System: Algorithms, Business Value, and Innovation. ACM Trans. Management Inf. Syst. 6(4): 
13:1-13:19 (2016)





Our Focus: Billboard Recommendation

Goal:  Recommend a single relevant 

title to each member at the right time 

and respond quickly to member 

feedback.

Example Billboard of Daredevil on the Netflix homepage



Traditional Approaches for 
Recommendation 

● Collaborative Filtering based 

approaches most popularly used.
○ Idea is to use the “wisdom of the 

crowd” to recommend items

○ Well understood and various 

algorithms exist (e.g. Matrix 

Factorization)

                  Collaborative Filtering



Challenges for Traditional Approaches 

Challenges for traditional approaches for recommendation: 
○ Scarce feedback

○ Dynamic catalog

○ Non-stationary member base

○ Time sensitivity

■ Content popularity changes

■ Member interests evolves

■ Respond quickly to member feedback



Multi-Armed Bandits
Increasingly successful in various practical settings where these challenges occur 

Clinical Trials Network Routing Online Advertising

AI for Games Hyperparameter Optimization 



Multi-Armed Bandit For Recommendation 

● Multiple slot machines with unknown reward 

distribution

● A gambler with multiple arms 

● Which machine to play in order to maximize the 

reward ?



Bandit Algorithms Setting

For each round

● Learner chooses an action from a set of available actions 

● The environment generates a response in the form of a real-valued reward which is sent 

back to the learner

● Goal of the learner is to  maximize the cumulative reward or minimize the cumulative 

regret which is the difference in total reward gained in n rounds and the total reward that 

would have been gained w.r.t to the optimal action.

Learner Environment

Action

Reward



Multi-Armed Bandit For Recommendation 

Exploration-Exploitation tradeoff :  Recommend the optimal title 

given the evidence i.e. exploit or recommend other titles to gather 

feedback i.e. explore.



Principles of Exploration

● The best long-term strategy may involve short-term sacrifices. 

● Gather information to make the best overall decision.

○ Naive Exploration: Add a noise to the greedy policy. [   -greedy ]

○ Optimism in the Face of Uncertainty:  Prefer actions with uncertain 

values. [Upper Confidence Bound (UCB)]

○ Probability Matching:  Select the actions according to the probability 

they are the best. [Thompson Sampling]



Numerous Variants

● Different Environments :  

○ Stochastic and stationary: Reward is generated i.i.d. from a distribution 

specific to the action. No payoff drift. 

○ Adversarial: No assumptions on how rewards are generated. 

● Different objectives: Cumulative regret, tracking the best expert

● Continuous or discrete set of actions, finite vs infinite

● Extensions: Varying set of arms, Contextual Bandits, etc.



Epsilon Greedy 

○ Exploration:  

■ Uniformly explore with a probability 

■ Provides unbiased data for training. 

○ Exploitation:  Select the optimal action with a probability (1 -    )



● Can support different contextual bandit algorithms i.e., Epsilon Greedy, 

Thompson Sampling, UCB, etc.

● Closed-loop system that establishes a link between how recommendations are 

made and how our members respond to them, important for online algorithms.

● Supports snapshot logging to log facts to generate features for offline training.

● Supports regular updates  of policies. 



System Architecture
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Online

● Apply explore/exploit policy

● Log contextual information

● Score and generate recommendations

Offline

● Attribution assignment 

● Model training



● Generate the candidate pool of titles

● Select a title from candidate pool
○ For uniform exploration, randomly select a title uniformly from the 

candidate pool



● Exploration Probability

● Candidate pool

● Selected title

● Snapshot facts for feature generation



● Filter for relevant member activity

● Join with explore/exploit information

● Define and construct sessions

● Generate labels
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● Join labels with snapshotted facts

● Generate features using DeLorean
○ Feature encoders are shared online and offline

https://medium.com/netflix-techblog/distributed-time-travel-for-feature-generation-389cccdd3907


● Train and validate model 

● Publish the model to production



● A/B test metrics

● Distribution of arm pulls
○ Stability

○ Explore vs. Exploit

● Take Rate
○ Convergence

○ Online v.s. Offline 

○ Explore v.s. Exploit
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Example Bandit 
Policies For 
Recommendation



● Let k = 1, … K denote the set of titles in the candidate pool 

when a member arrives on the Netflix homepage

● Let                   be the context vector for member i and title k.

● Let           represent the label when member i was shown the 

title k. 



● Learn a model per title in the candidate pool to predict the likelihood 

of play on the title

● Pick a winning title:

● Various models can be used to learn to predict the probability, for 

example, logistic regression, neural networks or gradient boosted 

decision trees. 
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Would the member have played the title 

anyways ? 



● Advertising: Target the user to 
increase the conversion.

● Causal Question: Would the user 
have converted anyways ?*

*Johnson, Garrett A. and Lewis, Randall A. and Nubbemeyer, Elmar I, Ghost Ads: Improving the Economics of Measuring Online Ad Effectiveness (January 12, 
2017). Simon Business School Working Paper No. FR 15-21. Available at SSRN: https://ssrn.com/abstract=2620078

https://ssrn.com/abstract=2620078


● Goal: Measure ad effectiveness. 

● Incrementality: The difference 
in the outcome because the ad 
was shown; the causal effect of 
the ad.
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*Johnson, Garrett A. and Lewis, Randall A. and Nubbemeyer, Elmar I, Ghost Ads: Improving the Economics of Measuring Online Ad Effectiveness (January 12, 2017). 
Simon Business School Working Paper No. FR 15-21. Available at SSRN: https://ssrn.com/abstract=2620078

https://ssrn.com/abstract=2620078


● Goal: Recommend title which has the largest additional benefit from being 

presented on the Billboard
○ Member could have played the title from anywhere else on the homepage or 

from search

○ Popular titles likely to appear on the homepage via other rows e.g., Trending Now

○ Better to utilize the real estate on the homepage for recommending other titles. 

● Define Policy to be incremental with respect to probability of play.  

 



● Goal: Recommend title which has the largest additional benefit from 

being presented on the Billboard

Where b=1 → Billboard was shown for the title and b=0 → not shown.



● Relies upon uniform exploration data. For every record in the uniform 

exploration log {context, title k shown, reward, list of candidates}

● Offline Evaluation: For every record

○ Evaluate the trained model for all the titles in the candidate pool.

○ Pick the winning title k’

○ Keep the record in history if k’ = k (the title impressed in the logged data) 

else discard it.

○ Compute the metrics from the history.

 



Uniform Exploration Data - Unbiased evaluation 

Evaluation 
Data

Train Data

Trained 
Model

Reveal context x 

Use reward only if k’ = k   

Winner title k’

context,title,reward
context,title,reward
context,title,reward

Take Rate = # Plays        
                     # Matches



Exploit has higher replay take rate as 

compared to incrementality. 

Incrementality Based Policy 

sacrifices replay by selecting a lesser 

known title that would benefit from 

being shown on the Billboard. 
Lift in Replay in the various algorithms as 
compared to the Random baseline 



Title A has a low baseline 
probability of play, however when 
the billboard is shown the 
probability of play increases 
substantially! 

Title C has higher baseline 
probability and may not benefit as 
much from being shown on the 
Billboard. Scatter plot of incremental vs baseline 

probability of play for various members. 



● Online take rates for take rates follow the offline patterns.

● Our implementation of incrementality is able to shift engagement within 

the candidate pool.



● Framework allows for easily plugging in different policies. Enables - 

○ Policy exploration:

■ Different MAB policies TS, UCB, etc.

■ Other ways of combining causal inference with MABs.

○ Model exploration:

■ Different models like NN, LR, GBDT, etc.

○ Reward exploration.

■ Consider long term reward

■ Different kinds of rewards 



Thank you. 


