A Multi-Armed Bandit Framework for Recommendations at Netflix

Jaya Kawale Elliot Chow

NETFLIX

Trending Now

Recommendations at Netflix

Personalized Homepage for each member

- Goal: Quickly help members find content they'd like to watch
- Risk: Member may lose interest and abandon the service
- **Challenge**: 117M+ members
- Recommendations Valued at: \$1B*

Top Picks for Joshua

Trending Now

Because you watched Narcos

New Releases

Our Focus: Billboard Recommendation

Goal: Recommend a **single relevant title** to each member at the right time and **respond quickly** to member feedback.

Example Billboard of Daredevil on the Netflix homepage

Traditional Approaches for Recommendation

- Collaborative Filtering based approaches most popularly used.
 - Idea is to use the "wisdom of the crowd" to recommend items
 - Well understood and various algorithms exist (e.g. Matrix Factorization)

Collaborative Filtering

Challenges for Traditional Approaches

Challenges for traditional approaches for recommendation:

- Scarce feedback
- Dynamic catalog
- Non-stationary member base
- Time sensitivity
 - Content popularity changes
 - Member interests evolves
 - Respond quickly to member feedback

Multi-Armed Bandits

Increasingly successful in various practical settings where these challenges occur

Clinical Trials

Network Routing

Hyperparameter Optimization

Al for Games

Online Advertising

Multi-Armed Bandit For Recommendation

 Multiple slot machines with unknown reward distribution

• Which machine to play in order to maximize the reward?

Bandit Algorithms Setting

For each round

- Learner chooses an action from a set of available actions
- The environment generates a response in the form of a real-valued **reward** which is sent back to the learner
- Goal of the learner is to maximize the cumulative reward or minimize the cumulative regret which is the difference in total reward gained in n rounds and the total reward that would have been gained w.r.t to the optimal action.

Multi-Armed Bandit For Recommendation

Exploration-Exploitation tradeoff: Recommend the optimal title given the evidence i.e. **exploit** or recommend other titles to gather feedback i.e. **explore**.

Principles of Exploration

- The best long-term strategy may involve short-term sacrifices.
- Gather information to make the best overall decision.
 - \circ Naive Exploration: Add a noise to the greedy policy. [ϵ -greedy]
 - Optimism in the Face of Uncertainty: Prefer actions with uncertain values. [Upper Confidence Bound (UCB)]
 - Probability Matching: Select the actions according to the probability they are the best. [Thompson Sampling]

Numerous Variants

- Different Environments :
 - Stochastic and stationary: Reward is generated i.i.d. from a distribution specific to the action. No payoff drift.
 - Adversarial: No assumptions on how rewards are generated.
- Different objectives: Cumulative regret, tracking the best expert
- Continuous or discrete set of actions, finite vs infinite
- Extensions: Varying set of arms, Contextual Bandits, etc.

Epsilon Greedy for MABs

Epsilon Greedy

- Exploration:
 - lacksquare Uniformly explore with a probability ϵ
 - Provides unbiased data for training.
- \circ **Exploitation**: Select the optimal action with a probability (1 ϵ)

Key Aspects of Our Framework

- Can support different contextual bandit algorithms i.e., Epsilon Greedy,
 Thompson Sampling, UCB, etc.
- Closed-loop system that establishes a link between how recommendations are made and how our members respond to them, important for online algorithms.
- Supports snapshot logging to log facts to generate features for offline training.
- Supports regular updates of policies.

System Architecture

Key Components

Online

- Apply explore/exploit policy
- Log contextual information
- Score and generate recommendations

Offline

- Attribution assignment
- Model training

Apply Explore/Exploit Policy

- **Generate** the candidate pool of titles
- Select a title from candidate pool
 - For uniform exploration, randomly select a title uniformly from the candidate pool

Log Contextual Information

- Exploration Probability
- Candidate pool
- Selected title
- Snapshot facts for feature generation

Attribution Assignment

- Filter for relevant member activity
- Join with explore/exploit information
- **Define** and construct sessions
- Generate labels

Feature Generation

- Join labels with snapshotted facts
- Generate features using <u>DeLorean</u>
 - Feature encoders are shared online and offline

Model Training and Publishing

- Train and validate model
- Publish the model to production

Metrics and Monitoring

- A/B test metrics
- Distribution of arm pulls
 - Stability
 - Explore vs. Exploit
- Take Rate
 - Convergence
 - o Online v.s. Offline
 - Explore v.s. Exploit

Example Bandit Policies For Recommendation

Background and Notation

• Let k = 1, ... K denote the set of titles in the candidate pool when a member arrives on the Netflix homepage

• Let $x_{ik} \in \mathbb{R}^d$ be the context vector for member i and title k.

• Let yik represent the label when member i was shown the title k.

Greedy Exploit Policy

 Learn a model per title in the candidate pool to predict the likelihood of play on the title

$$Pr(y_{ik} = 1|x_{ik}, K) = \sigma(f(x_{ik}, \Theta))$$

Pick a winning title:

$$k = \arg \max Pr(y_{ik} = 1 | x_{ik}, K)$$

 Various models can be used to learn to predict the probability, for example, logistic regression, neural networks or gradient boosted decision trees.

Greedy Exploit Policy

Would the member have played the title anyways?

Causal Effect of an Advertisement

Advertising: Target the user to increase the conversion.

 Causal Question: Would the user have converted anyways?*

Incrementality from Advertising

Goal: Measure ad effectiveness.

 Incrementality: The difference in the outcome because the ad was shown; the causal effect of the ad.

Random Assignment*

Incrementality Based Policy on Billboard

- Goal: Recommend title which has the largest additional benefit from being presented on the Billboard
 - Member could have played the title from anywhere else on the homepage or from search
 - o Popular titles likely to appear on the homepage via other rows e.g., Trending Now
 - Better to utilize the real estate on the homepage for recommending other titles.

Define Policy to be incremental with respect to probability of play.

Incrementality Based Policy on Billboard

 Goal: Recommend title which has the largest additional benefit from being presented on the Billboard

$$argmaxP(y_{ik} = 1|x_{ik}, K, b = 1) - P(y_{ik} = 1|x_{ik}, K, b = 0)$$

Where $b=1 \rightarrow Billboard$ was shown for the title and $b=0 \rightarrow not$ shown.

Offline Evaluation: Replay [Li et al, 2010]

 Relies upon uniform exploration data. For every record in the uniform exploration log {context, title k shown, reward, list of candidates}

- Offline Evaluation: For every record
 - Evaluate the trained model for all the titles in the candidate pool.
 - Pick the winning title k'
 - Keep the record in history if k' = k (the title impressed in the logged data)
 else discard it.
 - Compute the metrics from the history.

Offline Evaluation: Replay [Li et al, 2010]

Uniform Exploration Data - Unbiased evaluation

context,title,reward context,title,reward context,title,reward

Take Rate = # Plays # Matches

Offline Replay

Exploit has higher replay take rate as compared to incrementality.

Incrementality Based Policy sacrifices replay by selecting a lesser known title that would benefit from being shown on the Billboard.

Lift in Replay in the various algorithms as compared to the Random baseline

Which titles benefit from Billboard?

Title A has a low baseline probability of play, however when the billboard is shown the probability of play increases substantially!

Title C has higher baseline probability and **may not benefit as much** from being shown on the Billboard.

Scatter plot of incremental vs baseline probability of play for various members.

Online Observations

Online take rates for take rates follow the offline patterns.

 Our implementation of incrementality is able to shift engagement within the candidate pool.

Future Work

- Framework allows for easily plugging in different policies. Enables -
 - Policy exploration:
 - Different MAB policies TS, UCB, etc.
 - Other ways of combining causal inference with MABs.
 - Model exploration:
 - Different models like NN, LR, GBDT, etc.
 - Reward exploration.
 - Consider long term reward
 - Different kinds of rewards

Thank you.

