
What the heck is an
In-Memory Data Grid?

@addisonhuddy

How are we going to answer this question?

1. Tell you about my first introduction to IMDGs
2. See some real-world use cases
3. Design an IMDG
4. Implement Use Cases

Definition

IMDGs provide a lightweight, distributed, scale-out in-memory object store — the
data grid. Multiple applications can concurrently perform transactional and/or
analytical operations in the low-latency data grid, thus minimizing access to
high-latency, hard-disk-drive-based or solid-state-drive-based data storage.1

Gartner

1 https://www.gartner.com/reviews/market/in-memory-data-grids

My First Thought

My Second Thought

Two Examples

5,700 train stations
4.5 million tickets per day

20 million daily users
1.4 billion page views per day

40,000 visits per second

China Railway
Corporation

70+ cities
4,000 daily flights

706 aircraft
Largest airline website by visitors

Southwest
Airlines

When Not To Use An IMDG

- Small Amounts of Data
- Low-latency isn’t mission critical
- Not a total replacement for RDBMS

Let’s Make an IMDG

Design Goals

- Extremely Low Latency

- High Throughput

- Durability

- Large Datasets

- Consistency?

- Memory First

- Horizontal Scalability /

Elasticity

- Data Aware Routing

- Serialization /

Deserialization

Design Goals

- Extremely Low Latency

- High Throughput

- Durability

- Large Datasets

- Consistency

https://github.com/apache/geode

Memory First

Latency Comparison
Latency Comparison Numbers

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache

Compress 1K bytes with Zippy 3,000 ns 3 us

Send 1K bytes over 1 Gbps network 10,000 ns 10 us

SSD Seek 100,000 ns 100 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD

Read 1 MB sequentially from memory 250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory

Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip

Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD

Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms

1 Credit Jeff Dean, Peter Norvig, and Jonas Bonér

Hardware True Time Scaled Time

Memory 250,100 ns 2 days

SSD 1,100,000 ns 9 days

Disk 30,000,000 8 months

Why Memory?
Read 1 MB Comparison

Horizontal Scalability / Elasticity

System Architecture

Server

Server

Server

Server

Locator Locator

Client

...

Client
Client

Client
Client

Client
Client

Client
Client

Client

System Architecture

Server Server

Locator Locator

Client

...

Client
Client

Client
Client

Client
Client

Client
Client

Client

System Architecture

Server

Server

Server

Locator Locator

Client

...

Client
Client

Client
Client

Client
Client

Client
Client

Client

IMDGs & CAP Theorem
Availability

Consistency Partition
Tolerance

WAN Replication

lie
nt

S

S

S

S

L L

S

S

S

S

L L

Data Center
(NYC)

Data Center
(Tokyo)

Data Aware Routing

Latency Comparison
Latency Comparison Numbers

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache

Compress 1K bytes with Zippy 3,000 ns 3 us

Send 1K bytes over 1 Gbps network 10,000 ns 10 us

SSD Seek 100,000 ns 100 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD

Read 1 MB sequentially from memory 250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory

Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip

Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD

Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms

1 Credit Jeff Dean, Peter Norvig, and Jonas Bonér

Single Hop

Server

Server

Server

Server

Locator Locator

Client

...

Client
Client

Client
Client

Client
Client

Client
Client

Client

Local Cache

Server

Server

Server

Server

Locator Locator

Client

...

Client
Client

Client
Client

Client
Client

Client
Client

Client

Local Cache

Server

Server

Server

Server

Locator Locator

Client

...

Client
Client

Client
Client

Client
Client

Client
Client

Client

Serialization

1. Only (de)serialize when it is necessary
2. Only (de)serialize what is absolutely necessary
3. Distribute (de)serialize cost as much as possible

Basic User Operations

What have we created?

- Put/Get
- Queries
- Server-side functions
- Registered Interests
- Continuous Queries
- Event Queues

- Key/Value Object Store

- Share-nothing

architecture

- Memory Oriented

- Strongly Consistent

Use Cases

In-line Caching

S

S

S

S

L L

Client
Client

Client
Client

C

RDBMS

Look-Aside Caching

S

S

S

S

L L

Client
Client

Client
Client

C

RDBMS

Look-Aside Caching

S

S

S

S

L L

Client
Client

Client
Client

C

RDBMS

Pub / Sub System

Server

Server

Server

Server

Locator Locator

Client

...

Client
Client

Client
Client

Client
Client

Client
Client

Client

1

2

2

Real-Time Analytics with Functions

Server

Server

Server

Server

Locator Locator

Client

...

Client
Client

Client
Client

Client
Client

Client
Client

Client

Distributed Computation

Server

Server

Server

Server

Client

Client

Cient

Real-Time Analytics

Server

Server

Server

Server

Client
Client

Client

Client
Client

Client

Client
Client

Client

Rapidly Changing Data

O’Reilly Book

Questions

@addisonhuddy

