What the heck is an
In-Memory Data Grid?

@addisonhuddy

How are we going to answer this question?

Tell you about my first introduction to IMDGs
See some real-world use cases

Design an IMDG

Implement Use Cases

H W N o

Definition

IMDGs provide a lightweight, distributed, scale-out in-memory object store — the
data grid. Multiple applications can concurrently perform transactional and/or
analytical operations in the low-latency data grid, thus minimizing access to
high-latency, hard-disk-drive-based or solid-state-drive-based data storage.

Gartner

' https://www.gartner.com/reviews/market/in-memory-data-grids

My First Thought

My Second Thought

Two Examples

3¢

China Railway
Corporation

5,700 train stations
4.5 million tickets per day
20 million daily users
1.4 billion page views per day
40,000 visits per second

Southwests

Southwest
Airlines

70+ cities
4,000 daily flights
706 aircraft
Largest airline website by visitors

When Not To Use An IMDG

- Small Amounts of Data
- Low-latency isn’t mission critical
- Not a total replacement for RDBMS

Let’s Make an IMDG

Design Goals

- Extremely Low Latency
- High Throughput

- Durability

- Large Datasets

- Consistency?

Design Goals

Extremely Low Latency
High Throughput
Durability

Large Datasets

Consistency

Memory First
Horizontal Scalability /
Elasticity

Data Aware Routing
Serialization /

Deserialization

\‘"” APACHE

https://github.com/apache/geode

Memory First

Latency Comparison

Latency Comparison Numbers

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us

Send 1K bytes over 1 Gbps network 10,000 ns 10 us

SSD Seek 100,000 ns 100 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD

Read 1 MB sequentially from memory 250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip

Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms

' Credit Jeff Dean, Peter Norvig, and Jonas Bonér

Why Memory?

Read 1 MB Comparison

Hardware True Time Q/ Scaled Time
7\

Memory 250,100 ns -§ 2 days

SSD 1,100,000 ns 9 days

Disk 30,000,000 8 months

Horizontal Scalability / Elasticity

System Architecture

>
%

-

System Architecture

S =y
.

-

System Architecture

>
%

-

IMDGs & CAP Theorem

PostgreSQL

A vailability < JBoss

@ @ by Red Hat

&8 redis

& hazelcast

GREENPLUM
DATABASE

Consistency Partition

2 ORACLE Tolerance
AN APACHE apache

%S GEODE Conerence Slgriite

WAN Replication

Data Center
E)

Lo

Data Center
(Tokyo)

Data Aware Routing

Latency Comparison

Latency Comparison Numbers

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us

Send 1K bytes over 1 Gbps network 10,000 ns 10 us

SSD Seek 100,000 ns 100 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD

Read 1 MB sequentially from memory 250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip

Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms

' Credit Jeff Dean, Peter Norvig, and Jonas Bonér

Local Cache

S
R

o=

Local Cache

Serialization

total (nanos)
e ——.—
pson/mongodb GGG o402
avro I 5239
protobuf - 6370
data-serializable/gemfire N 5539
pdx-senalizable/gemfire | NG 819
auto-serialization/gemfire - NG 12714

1. Only (de)serialize when it is necessary
2. Only (de)serialize what is absolutely necessary
3. Distribute (de)serialize cost as much as possible

Basic User Operations

What have we created?

- Key/Value Object Store

- Share-nothing
architecture

- Memory Oriented

- Strongly Consistent

Put/Get

Queries

Server-side functions
Registered Interests
Continuous Queries
Event Queues

Use Cases

In-line Caching

Look-Aside Caching

Look-Aside Caching

Pub / Sub System

Real-Time Analytics with Functions

-
-

o=

Distributed Computation

/-
-

\.

Real-Time Analytics

O’Reilly Book

OREILLY

Scaling Data R
Services with
Pivotal GemFire:

Getting Started with
In-Memory Data Grids

Mike Stolz

Questions

@addisonhuddy

