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Who am |

Reza Shiftehfar

PhD in Computer Science from University of lllinois
@Urbana-Champaign

with Uber since 2014

Founding engineer of the data platform team at Uber
Currently managing the Hadoop Platform team at Uber
Helped scale Uber's data from a few TB to 100+ PB
Helped lower data latency from 24+ hrs to minutes
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Intro to Data @ Uber:



Uber's Mission

“Transportation as reliable as running
water, everywhere, for everyone”

600+ Cities 75+ Countries

And Growing...




The Impact of Data @ Uber

1. City OPS (~1000s)

e On the ground team who run and scale uber's transportation network

2. Data Scientists and Analysts (~100s)

e Spread across various functional groups (e.g. Marketing Spend, Forecasting)

3. Engineering Teams (~100s)

e Focused on building automated data applications (Fraud Detection, Incentive Payments,
Background Checks,...)



Not long ago (Before 2014)

¢ Data small enough to fit into _ _ _
a few OLTP DBs (MySQL/ Service 1 Service 2 Service 3

Postgresql)

e Users had to access these
DBs individually to play with
the data Postgresql/ MySQL Postgresql/ MySQL

Data size: ~100GB to a few TB
Latency: very fast since it was in a real DB
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The beginning of Big Data - Generation 1 (2014-2015)

Applications:
< Kafka 7 ( EMR e ETL/Modelling
City Ops

[ ]
e Machine Learning
e Experiments

ETL Vertica
(Data Warehouse)

Key-Val DBs Ad hoc Analytics:
(Sharded) e City Ops
Generation 1 (2014-2015) e Data Scientists

Data size: ~10s TB
Latency: 24hrs - 48hrs

RDBMS DBs °



The beginning of Big Data - Generation 1 (2014-2015)

Highlights Gen. 1:

Scalability grew to ~10s TB

Global view of all data in one place

Vertica support of SQL made it very popular

More number of users could query the data in

parallel (~100s)

e Applications started to build products around
data (e.g. ML, Experiment,...)

e Users started to run ad hoc queries to better run

the business or explore data
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The beginning of Big Data - Generation 1 (2014-2015)

Problems/ Limitations:
Gen.1- Pain Point #1: Data Reliability:

e Word-of-mouth Schema communication
e Json data, breaking pipelines

Gen.1- Pain Point #2: Data Scalability:

e [Exponential grow of data faster than expected

I.  Had to delete older data to free up space for new incoming data
e Many parts were not horizontally scalable (e.g. Kafka 7, Celery workers,...)
e Warehouse tool (Vertica) was used as Data Lake

I.  Raw data piling up in Vertica

ii.  Data Modelling happening in Vertica
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The beginning of Big Data - Generation 1 (2014-2015)

Problems/ Limitations (cont.) :
Gen.1- Pain Point #3: Fragile ingestion:

e Multiple ingestion of the same data due to Transformation in the pipeline

I.  Extra pressure on the source

ii.  Multiple copies of the same data in Vertica
e ETL jobs source-dependent, stand alone jobs/scripts, hard to add new data sets/types
e Painful Backfilling because of projections & transformation in the pipelines
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The arrival of Hadoop - Generation 2 (2015-2016)

< Kafka 8 (

ETL
(Flattened/ Modelled Tables)

1

Applications:
e ETL/ Modelling
e City Ops
e Machine Learning
e Experiments

ey
Ingestion Schema {////
(EL) enforced

Parquet Hadoop

Hive/ Spark/
Presto/
Notebooks

Key-Val DBs
(Sharded)

Flattened/ Modelled
Tables (re¢ent data)

Verti
Generation 2 (2015-2016) ertica

(Data Warehouse)
Data size: ~10 PB

Latency: 24hrs

RDBMS DBs
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Ad hoc Analytics:
e City Ops
e Data Scientists




The arrival of Hadoop - Generation 2 (2015-2016)

Highlights Gen. 2:

All raw data is stored in Hadoop Data Lake
Data stored as Columnar Parquet format

e More efficient storage

e  More efficient queries
e All ETL/Modelling happens in Hadoop
e Subset of data transferred to warehouse

e Only flattened selected recent dates

e Presto added as interactive query engine
e Spark notebooks added to encourage data
scientists to use Hadoop
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The arrival of Hadoop - Generation 2 (2015-2016)

Big Wins:

e Hadoop became the source-of-truth for all data
e 100% of All analytical data in one place
e Hadoop powered critical Business Operations
e Partner Incentive Payments, Fraud
e Unlocked the real power of data
e Gave us time to stabilize the infrastructure
(Kafka,....) & think long-term

Some Numbers (early 2016): . m i *Jl"t,(,';
R 3 bk, ,*‘ i _;';“ el " : S

~10 PB in HDFS i

~10 TB/day new data

~10k vcores

~100k daily batch jobs
And growing...
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The arrival of Hadoop - Generation 2 (2015-2016)

Solved issues from Generation 1:

Gen1—PainPeint##1DateRetiabiity—Sehermaissue -> Solved

e Schematized All Data (Json -> Parquet)
e Build a new central Schema-Service with client libraries for auto integration

Gen-1—PainPoint#2: Date-Seatabiiity -> Solved

e All Infrastructure horizontally scale
e Kafka 8 & Hadoop were introduced

Gen1—PainPeint#3Fragitetrgeston -> Solved

e Hadoop Data Lake was added
i.  Store raw data in original nested format in Hadoop
e Data modelling moved to Hadoop
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The arrival of Hadoop - Generation 2 (2015-2016)

Why data latency remains at 24 hours?

ETL
(Flattened/Modelled Tables)

Snapshot based ingestion: T
>100 TBs for Jan 2016: 6 hrs (500 executors) 5| < Batch recompute:
Trips table Aug 2016: 10hrs (1000 executors) - 8-10 hrs "

% q
Snapshot Ingestion /'//// Hive/Spark/

Presto/
(Batch) Parquet Notebooks
Upsert
| Ingestif)n
(Streaming) Generation 2 (2015-2016)
Data size: ~10 PB
Key-Val DBs (Sharded) Latency: 24hrs

E2E data latency:
18-24 hours 18
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The arrival of Hadoop - Generation 2 (2015-2016)

Problems/ Limitations:
Gen.2- Pain Point #1: Scalability:

e Too many small files in HDFS (required async stitcher)
e Source-specific data ingestion pipelines increased maintenance cost

Gen.2- Pain Point #2: Data Latency too high:
e snapshot based ingestion results in 24hrs data latency

Gen.2- Pain Point #3: Updates became a big problem:
e Updates/late-arriving-data are natural part of our data

Gen.2- Pain Point #4: ETL/ Modelling became the bottleneck:
e ETL/Modelling was snapshot based (running daily off raw tables)
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Let’s rebuild for long term - Generation 3 (2017-present)

Some Numbers (early 2017):

~100+ PB in HDFS data
~100k vcores

~100k Presto queries/day
~1000+ Spark apps/day
~20k Hive queries/day
And still growing...
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Let’s rebuild for long term - Generation 3 (2017-present)

Motivation for rebuilding:

e Interactive Query engines -> Hadoop data extremely popular
e No more fire-fighting -> allowed study of our real needs

Problems to solve:
e Gen.2- Pain Point #1: HDFS Scalability

e Namenode will always be the bottleneck
e Small files are the killer
e Benefit from ViewFS and Federation to scale
e Controlling small files and moving part of data to a separate cluster (e.g. HBase, Yarn
app logs) can let you get to 100+ PB
e See our recent Engineering Blog post on this
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https://eng.uber.com/scaling-hdfs/

Let’s rebuild for long term - Generation 3 (2017-present)

Problems to solve:

 Gen.2- Pain Point #2: Faster data in Hadoop
e Need fully incremental ingestion of data

e Gen.2- Pain Point #3: Support for Updates/Deletes in Hadoop/Parquet

e Need to support Update/Deletion during ingestion of incremental changelogs
e (Qut data has large number of columns with nested data support -> Parquet stays

e Gen.2- Pain Point #4: Faster ETL/ Modelling

e ETL has to become incremental too
e Need to allow users to pull out only changes incrementally
e Have to support all different query engines (Hive, Presto, Spark,...)
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Let’s rebuild for long term - Generation 3 (2017-present)

Update/late-arriving data is natural:

Incremental pull

(every 30 min)

Our largest datasets
stored in key-value
sharded DBs

New Trip Data
Existing Trip Data
Updated Trip Data

0as

Ingestion
(Batch)

24

2010-2014 e
partition L IrrIrIno
20150xx (0 00 08 O (0 @8
partition el I 1
2016iixx_, (DEEC]EE
partition SO,
2017/xxX/XX C el el 1
ZuCanaN | =l | [=
2018/xX/XX @eC0Odd
partition 1 1 1 1 |

Data partitioned by trip start date in Hadoop
(at day-level granularity)



Let’s rebuild for long term - Generation 3 (2017-present)

What did we build to address these needs?

e Built Hudi: Hadoop Upserts anD Incremental
e Storage abstraction to:

* Apply upsert/delete on existing Parquet data Normal Table
in Hadoop (Hive/ Presto/ Spark)

e Pull out changed data incrementally T
e Spark based library:
e Scales horizontally like any Spark job
e  Only relies on HDFS Update/ Delete/ Large Incr. Pull
e Itis open-sourced (Hudi on Github) Insert records™> [ERCICECLIM— (Hive/ Spark/

in HDFS Presto)

25


https://github.com/uber/hudi

Let’s rebuild for long term - Generation 3 (2017-present)

Incremental ingestion in Gen. 3:

ETL
(Flattened/Modelled Tables)
f N
_ Incremental ingestion: < <30 min
- <30min to get in new data/updates Increrhental 1
ngelogs Pyl

Key-Val DBs

(Sharded) RN Ingestion Hive/Spark/
Kafka (Batch) Update Presto/
Parquet Notebooks

Delete

Hudi

Generation 3 (2017-present)
Data size: ~100 PB

Latency: <30min raw data

RDB E2E Fresh data ingestion: <1 hr modelled
<30 min for raw data Tables

A
Y

<1 hour for Modellggg Tables



Let’s rebuild for long term - Generation 3 (2017-present)

What is Incremental Processing:

e Traditional A architecture provides: Streaming vs Batch solutions

e That assumes append-only immutable data
e Processing based on timestamp (usually skips late-arriving data)
e Incremental Processing is mini-batch jobs that pulls out only changed data

e This gets you all the recently appended data as well as old changed/updated records
e Provides high completeness (compared to streaming mode)

e Processing no longer limited by updates/deletes or late-arriving data

e |s abatch job and supports full batch functionality (e.g. joins,....)

Database S”ea”.” , el , Batch Processing
Processing min-batch Processing

| | | | =

<1 Sec <5 min <1 hour
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Let’s rebuild for long term - Generation 3 (2017-present)

Stream/Batch processing Trade off:

e [atency
e Completeness
e (Cost (Throughput/efficiency)

Study your use case based on these trade off

-

Latency

Day

Hours

1 Hour

<30 Mins

<10 Mins

<1 Min

A

’ Dashboards H ML Features ‘

Surge Signals

Moot; Batch
. I Backfill Pipelines ‘

Data Science ‘

’ Experimentation I

ML Features

Stream : l Incentive Payments ‘Incrsmental

I Deeper Dashboards ‘

- | Fraud Detection

>

Completeness

MacBook Air
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Let’s rebuild for long term - Generation 3 (2017-present)

Standardized Hive raw data model:
Hive Partial-Row Changelog table:

Partitionin

e View 1: Merged Snapshot table

row_partition
9]row_keys|Column a|Column b | “wigime str

e View 2: Changelog history table "lo' 1 5
r a -

t1 r1 - b t0

12 r1 = c t0

3 r1 d - t0

User input for storage Partial-row Changelogs:
- N 1) (r1, c1:a) time:t0

1) put (r1, c1:a) time:t0 DataStore 2) (r1, c2:b) time:t1

2) put (r1, c2:b) time:t1 3) (r1, c2:c) time:t2

2) put (r1, c2:c) time:t2 4) (r1, c1:d) time:t3

2) put (r1, c1:d) time:t3

Hive Full-Row Snapshot table:

row_keys Column b >artitiont
miind | Column a | “dn,:f;',r,'g| row_keys |Column a | Column b

1 = A ‘0‘”’/")’

d c d c
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Let’s rebuild for long term - Generation 3 (2017-present)

Generic Any-to-Any Data platform (To be open-sourced soon)

Schema-Service

Kafka logging
Library

Sl-lngli/ Analytical
Presto/ data Users
Key-Value DBs Notebooks (Direct Access)

MySQL/ Cassandra

Postgresql I Di |
ngestion . ispersa
Service Anggtt;cal Service AWS S3

Cassandra
ElasticSearch

Hudi file format

ElasticSearch
30
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What’s coming next - Generation 4 (Ongoing effort)

Are we done? Any remaining items?

1. Data Quality is still a concern:

e Further unification of Hadoop Ingestion with strict contract with Storage team
e Expand schema-service beyond type/structural check and into semantic checks

2. Still Need faster data access
e ~5-10 min Hadoop data for mini-batching to compete with Streaming
3. Efficiency is the next big monster

e Don’t limit yourself to Hadoop. Go for the entire compute resources
e Unified resource scheduler for Hadoop and beyond (Mesos, Yarn and now Peloton)
e See our presentation at “Hadoop Infrastructure@Uber Past ., Present and Future”

4. Hoodie is still actively being developed

e Get rid of sensitivity with respect to the ratio of update/delete vs insert
e Provide large Parquet file (1+ GB) with data latency of 5-10min
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https://apachebigdataeu2016.sched.com/event/8U35/keynote-hadoop-infrastructure-uber-past-present-and-future-mayank-bansal-sr-engineer-uber

What’s coming next - Generation 4 (Ongoing effort)

Hoodie Storage 1.0:

Copy-on-write solution

Rewriting Parquet files on updates/deletes

Output Partition + Row_Key are required

1GB file very expensive

Supports per partition index
Can we get rid of output partition?

Hoodie Storage 1.0 (Copy-On-Write):

f =
3
o
a

(r1, c1:v1, c2:v2)
(r2, c1:v3, c2:v4)
(r3, c1:v5, c2:v6)

Batch 1 of
hangelogs
(=l

B
3c
B

, ¢1:v7, c2:v8)

'A‘..
-
-

Ingestion
Job

Batch 2 of

Changelogs 2 Changelogs
]

(using
Hoodie)

(r1, c1:v9, c2:v10)
(r2, c1:v11, c2:v12)

A

! Batch3of =

=
3
3
-
=

(r1, c1:v13, c2:vi4)
(r3, c1:v15, c2:v16)

Batch 4 of
Changelogs

wW
w

file1.parquet.vi1

r1_Jei:vifc2:v2)
c1:v3] c2:vé]
r3 Jc1:v5| c2:v6

file1.parquet.v3
r1 Ic :v9
ci:vi1

r3 Jc1:v5 |c2:v6
|

file1.parquet.v4

c1:vi3fc2:vid)
c1:v11fc2:v12)
c1:v15jc2:v16)

B B et




What’s coming next - Generation 4 (Ongoing effort)

Hoodie Storage 2.0:

Merge-on-Read solution
Have row-based delta file + Parquet file
e Merge only when the cost of rewrite
is amortized
Merge on Query side
e Provides 5-10min hadoop data

Add Global Index

Hoodie Storage 2.0 (Async. Compaction):

Time t1:

atch 1 of
Changelogs

m <

Time t2:

-I:(r1. c1:v7, c2:v8)

2]
S

Batch 2 o
Changelo

=
3
®

Batch 3 of
Changelogs

=
3
o

Batch 4 of

Changelogs

|

(r1, c1:v1, c2:v2)
(r2, c1:v3, c2:v4)
(r3, c1:v5, c2:v6)

t3:

(r1, c1:v9, c2:v10)
(r2, c1:v11, c2:v12)

t4:

Rr1, c1:v13, c2:v14)

A

—
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(r3, c1:v15, c2:v1 6)_>

file1.parquet.v1

r1_Jeivi] c2:v2)
c1:v3] c2:v4]
r3 Jc1:v5|c2:v6
|

file1_change.avro

(r1, c1:v7, c2:v8)
(r1, c1:v9, c2:v10)
(r2, c1:v11, c2:v12)
(r1, c1:v13, c2:v14)
(r3, c1:v15, c2:v16)

Ingestion
Job
(using
Hoodie)

file1.parquet.v2

Mpactiop at
’ntewa,s

Async Co,
desireq



What’s coming next - Generation 4 (Ongoing effort)

Be flexible with users:
e Hudi’'s supported different Storage Types and Views

. A
Storage Type Supported Views
o | | REALTIME
E
Storage 1.0 Read Optimized, ‘é’
(Copy On Write) Changelog View §
5
e
s
Read Optimized, (¢] READ
Storage 2.0
¢ RealTime, OPTIMIZED
(Merge On Read) :
Changelog View Data Latency

35



UBER

Data @ Uber:
Lessons learned



Data @ Uber - Lessons Learned

2.

Investigating your data/use cases and finding the required primitives pays

back huge
e With GDPR requirement, Having Update/Delete on the entire Hadoop dataset is life-saving

Data Quality will be an ongoing effort

e Enforce schema (mandatory and pre-defined) as early as possible
e Move beyond type checking and into semantic checking (define your own data types)
e This is the key distinction between garbage data and a real data-driven company

Standardize everything as soon as possible

e Don’'t make exceptions (it always comes back at you)
e This is the key to having reliable Big data that can scale while being efficient
e This is the key to have happy data users and to be able to educate them on how to use your data
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Data @ Uber - Lessons Learned

4. Ensure you have a solid data retention policy as well as a standard data model

as early as possible
e Retention from beginning saves you $ on wasted space and educates users to not waste
5. Track all related data metadata
e \Who owns what data, data lineage, data content, data access,...

6. Investin a good data pipeline monitoring

e Define your terminology and stick to it (Ereshness, Latency, Completeness, Late-arriving-data,...)
e Detects many corner cases and lets you solve the issue before it affects your users

/. Minimize your dependency on user-defined values

e User-defined values always break your job
e Replace them by system-defined values as much as possible (e.g. user define ts vs system ts)

8. Pay attention to notion of time in your data and educate users on those
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Hadoop Platform @ Uber

Want to be part of Gen.4 or
beyond?

e Come talk to me

o Office Hours: 11:30am - 12:10 pm

e Positions in both SF & Palo Alto

o email me: reza@uber.com

gconomy

& W

$333 $7.89

e 8321

REQUEST POOL
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Uber’s Data Journey:
100+ PB with Minute Latency

UBER
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Further references
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5. “Hoodie: Incremental processing on Hadoop at Uber”, Vinoth Chandar, Prasanna Rajaperumal,
Strata + Hadoop World, 2017.
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, 2016.
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America, 2017.

11.
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Data @ Uber: Generation 2 (2015-1016)

But soon, a new set of Pain Points showed up:

Gen. 2- Pain Point #1: Reliability of the ingestion

o Bulk Snapshot based data ingestion stressed source systems
o Spiky source data (e.g. Kafka) resulted in data being deleted before it can be written out
o Source were read in streaming fashion but Parquet was written in semi-batch mode

Gen. 2- Pain Point #2: Scalability

O  Small file issue of HDFS started to show up (requiring larger Parquet files)

o Ingestion was not easily-scalable due to:
m involving streaming AND/OR batch modes
m  Running mostly on dedicated HW (Needed to set it up in new DCs without YARN)
m Large sharded Key/Val provided changelogs that needed to be merged/compacted

Gen. 3- Pain Point #3: Queries too slow
o Single choice of query engine
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Data @ Uber: Generation 2.5 (2015-1016)

Applications:
[ J

ETL
Kafka 8 ETL e Business Ops
(Flattened/Modelled Tables) e Machine

Learning
J [ e Experiments
II Ingestion 277, Hive/Spark/
Ingestion (Batch) '// . Presto/
(Streaming) Row based Parquet Notebooks
(HBase/ Hadoop
Sequence file
Key-Val DBs (3harded) Flattened/
Modelled Tables Adhoc Analytics:
e City Ops

e Data Scientists

Vertica

(Data Warehouse) 45

RDBMS DBs



Data @ Uber: Generation 2.5 (2015-1016)

Main Highlights

Presto added as interactive query engine
Spark notebooks added to encourage data scientists to use Hadoop

Simplified architecture: 2-Leg Data Ingestion
o Get raw data into Hadoop, then do most of work as batch jobs
Gave us time to stabilize the infrastructure (Kafka,....) & think long-term

Reliable data ingestion with no data loss
o since data was streamed into Hadoop with minimum work
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Data @ Uber: Generation 2.5 (2015-1016)

2-Leg data ingestion: Full Snapshot | Fulldump | Snapshot Tables:
(HBase) - Trips snapshot
- User snapshot

o Legl:

O Running as streaming job on dedicated hardware

O No extra pressure on the source (especially for
Backfills/Catch-up)

O  Fast streaming into row-oriented storage - HBase/Sequence file
O Can run on DCs without YARN etc

o Lleg2: DB changelogs
O Running as batch jobs in Hadoop (HDFS)
O  Efficient especially for Parquet writing
O Control Data Quality -

Incremental Tables:
- Changelog history
- Kafka events

Incrementa
(Append-o

m  Schema Enforcement - Kafka logs
m  Cleaning JSON - (HDFS)
m  Hive Partitioning

O  File Stitching -

BH  Keeps NN happy & queries performant 47



Data @ Uber: Generation 2.5 (2015-1016)

Hive:

e Powerful, scales reliably
e But slow

Vertica:

e [ast
e Can’t cheaply scale to x PB

Spark Notebooks

e Great for Data Scientists to
prototype/explore data

Presto:

Interactive queries (fast)

Deployed at scale and good integration
with HDFS/Hive

Doesn’t require flattening unlike Vertica
Supported ANSI SQL

Have to improve by adding:
o  Support for geo data
o Better support for nested data types
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Data @ Uber: Generation 2.5 (2015-1016)

Solved issues from Generation 2:

Gen. 2- Pain Point #1: Reliabilityofthetnrgesten -> solved
Btk Sranshot based-data . |

Gen. 2- Pain Point #2: Sealabiiity -> solved
Sttt fHDES I I f oo - fres
o Ingestion was not easily-scalable due to:
ol e ANDICR batel I
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Data @ Uber: Generation 2.5 (2015-1016)

Pain points of snapshot-based DB ingestion:

ETL
(Flattened/Modelled Tables)

Snapshot based ingestion:
>100TBs for Jan 2016: 6 hrs (500 executors) Batch recompute:
Trips table Aug 2016: 10hrs (1000 executors) 8-10 hrs
. %% |
Ingestion o// Hive/Spark/
HBase (Batch) Parquet Presto
Upsert |
| Ingestion
(Streaming)

Key-Val DBs (Sharded)

E2E Fresh data ingestion:
18-24 hours

50



Data @ Uber: Generation 2.5 (2015-1016)

But soon, a new set of Pain Points showed up:

Gen. 2.5- Pain Point #1: Scalability

o HDFS IO pressure since raw data was stored twice (both in row format and Parquet)
o Data ingestion pipelines became very source-specific with increased maintenance cost

Gen. 2.5- Pain Point #2: Data Latency too high

O  snapshot based ingestion results in delayed fresh data (12-24hrs to get a new snapshot)
m Even for append-only part, extra hop adds latency
m Required async stitcher to avoid small file issue
Gen. 2.5- Pain Point #3: Updates became a big problem

o Updates are natural part of our data
Gen. 2.5- Pain Point #4: Late-arriving data also very common
o Late-arriving data because of late production time or data getting stuck in the pipeline

Gen. 2.5- Pain Point #5: ETL/ Modelling became the bottleneck

e Since most of ETL/Modelling was snapshot based (running daily off raw tables) 51
e Need for incremental computation to update modeled tables at hourly rate



Let’s rebuild for long term - Generation 3 (2017-present)

Any work-around for snapshot-based ingestion?
1. Directly Query HBase

e Range scan will make it a bad fit
e | ack of support for nested data
e Significant operational overhead for 100 PB

2. Don’t support Snapshot view and only provide logs

e Users need the merged view and will have to do it in their queries which makes it inefficient
e Merging can be done inconsistency resulting in data correctness

3. Use specialized analytical DBs

e (Can’t bypass HDFS since we still need to join with other data in HDFS
e Not all data fits into memory and many queries will fail

e | eads to lambda architecture issue and multiple copies of the same data
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Data @ Uber: Generation 3 (2017-present)

How does Incremental Ingestion in Gen 3 change data freshness/Latency?

Raw Tables Modeled Tables
Available in Hive Available in Hive

|< <30 min | 15 min (Modeling Time) >|

Key-Val /—\
DBs

HDFS | 4 Y HDFS | 4
Ingestion job | Hudi Modelling | Hoodie |
Kafka (Batch) > Raw v Incr. Read Logic (Upsert) Modelled | ,
Parquet E (E) W) (L) Parquet E
File >, File

: Other DBs \ J

<1 min <1min <15 min
|< > | <t >

<45 min
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Data @ Uber: Generation 3

What does Incremental Processing mean:

Lambda architecture:

.--//.‘.\
A /:>e$ /
Speed (Real-Time) .""V/Q(f(/‘/
Processing -

Batch Processing

Speed (Real-Time)
Processing

Batch Processing
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Data @ Uber: Generation 3

Stream/Batch processing Trade off:

e Latency
e Completeness
e Cost (Throughput/efficiency)

Operation challenges in Streaming & Batch:

Projections (Streaming:Easy Batch:Easy)
Filtering (Streaming:Easy Batch:Easy)
Aggregations (Streaming:Tricky Batch:Easy)
Window (Streaming:Tricky Batch:Easy)
Joins (Streaming:HARD Batch:Easy)
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Data @ Uber: Generation 3

Do we need Streaming, Batch or Incremental?

e Need to investigate your use cases (based on latency vs Completeness)

A .
Latency Moot r Batch
Day ’ Backfill Pipelines
Data Science }
Hours Experimentation . . .
: i ML Features e Very distinct uses cases for Streaming
— SI ..... S ltP ..... : I . Py Very distinct use Casesfor Batch
el __ncen ive Payments | /ncrementa .
3 e Alot of use cases that can benefit from
4 eeper Dashboards .
<30 Mins ; incremental mode
: | Fraud Detection tasterEll
<10 Mins Dashboards ‘ ’ ML Features ‘

~
Completeness



Data @ Uber: Generation 3: Provide Incremental
processing

What exactly is Incremental mode?

e Mini-batch jobs that pulls out only changed data
e Provides high completeness (compared to streaming mode)
e Supports all hard operations as any other batch job (like multi-table joins,....)

Database Strea”.“ : Incremental , Batch Processing
Processing min-batch Processing

I | | =

<1 Sec <5 min <1 hour
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Data @ Uber: Generation 3: Provide Incremental

processing

How does Incremental mode help efficiency?

e Read only what you need by using Columnar file formats

e Simple solution for all types of queries (joins,

)

e Consolidation of Compute & Storage for all use case (exploratory,

interactive,....) o

Read all
nKaka | [ >
(with 1000 fields each) 1000 fickls

Parquet Files on Read only
o | ) | Rl

(with 1000 fields each)

10 Cost

Amount of bytes

read is 100x
smaller

[—

—>

Decode
1000 fields
into
Memory

Record
Assembly

CPU Cost
Typically lower to
assemble 1/100th of
total fields.
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