












Postgresql/ MySQL

Service 1 Service 2 Service 3

Data size: ~100GB to a few TB
Latency: very fast since it was in a real DB

Postgresql/ MySQL





Kafka 7

RDBMS DBs

Key-Val DBs 
(Sharded)

Vertica
(Data Warehouse)

ETL

EMRAmazon S3 Applications:
● ETL/ Modelling
● City Ops
● Machine Learning
● Experiments

Ad hoc Analytics:
● City Ops
● Data ScientistsGeneration 1 (2014-2015)

Data size: ~10s TB
Latency: 24hrs - 48hrs











Vertica
(Data Warehouse)

Ingestion
(EL)

ETL
(Flattened/ Modelled Tables)

Hive/ Spark/ 
Presto/ 

Notebooks

Flattened/ Modelled 
Tables (recent data)

Hadoop

Schema 
enforced

Key-Val DBs 
(Sharded)

RDBMS DBs

Kafka 8
Applications:

● ETL/ Modelling
● City Ops
● Machine Learning
● Experiments

Ad hoc Analytics:
● City Ops
● Data Scientists

Generation 2 (2015-2016)
Data size: ~10 PB

Latency: 24hrs









Key-Val DBs (Sharded)

Ingestion
(Streaming)

ETL
(Flattened/Modelled Tables)

Hive/Spark/ 
Presto/ 

Notebooks
HBase

Upsert

Ingestion
(Batch)

>100 TBs for 
Trips table

Snapshot based ingestion:
Jan 2016: 6 hrs (500 executors)
Aug 2016: 10hrs (1000 executors)

Batch recompute:
8-10 hrs

E2E data latency:
18-24 hours

Snapshot

Generation 2 (2015-2016)
Data size: ~10 PB

Latency: 24hrs









https://eng.uber.com/scaling-hdfs/




Our largest datasets 
stored in key-value 

sharded DBs

Ingestion
(Batch)

Incremental pull
(every 30 min)

2010-2014
partition

2015/xx/xx
partition

2016/xx/xx
partition

2017/xx/xx
partition

2018/xx/xx
partition

New Trip Data
Existing Trip Data
Updated Trip Data

Data partitioned by trip start date in Hadoop 
(at day-level granularity)



Large 
Dataset 
in HDFS

Incr. Pull
(Hive/ Spark/ 

Presto)

Update/ Delete/ 
Insert records

Normal Table
(Hive/ Presto/ Spark)

https://github.com/uber/hudi


Hudi

Kafka

ETL
(Flattened/Modelled Tables)

Hive/Spark/ 
Presto/ 

Notebooks

Ingestion
(Batch)

Incremental ingestion:
<30min to get in new data/updates

<30 min

E2E Fresh data ingestion:
<30 min for raw data Tables
<1 hour for Modelled Tables

Changelogs

Generation 3 (2017-present)
Data size: ~100 PB

Latency: <30min raw data
             <1 hr modelledRDBMS DBs

Key-Val DBs 
(Sharded)

Changelogs

Changelogs

Incremental 
Pull

Insert
Update
Delete



<1 Sec <5 min <1 hour

Database Stream 
Processing

Incremental 
min-batch Processing Batch Processing







Ingestion 
ServiceKafka

Hadoop

Hudi file format

Schema-Service

Analytical 
data Users
(Direct Access)

Cassandra

Analytical 
Data

Dispersal 
Service

Kafka logging 
Library

Key-Value DBs

MySQL/ 
Postgresql

Cassandra

ElasticSearch

AWS S3

ElasticSearch

...

Hive/ 
Spark/ 
Presto/ 

Notebooks





https://apachebigdataeu2016.sched.com/event/8U35/keynote-hadoop-infrastructure-uber-past-present-and-future-mayank-bansal-sr-engineer-uber


Ingestion 
Job

(using 
Hoodie)



Ingestion 
Job

(using 
Hoodie)



Storage Type Supported Views

Storage 1.0

(Copy On Write)

Read Optimized,

ChangeLog View

Storage 2.0

(Merge On Read)

Read Optimized,

RealTime,

ChangeLog View









Want to be part of Gen.4 or 
beyond?

● Come talk to me

○ Office Hours: 11:30am - 12:10 pm

● Positions in both SF & Palo Alto 
○ email me:  reza@uber.com

Hadoop Platform @ Uber

39

mailto:reza@uber.com




Further references
1. Open-Source Hudi Project on Github
2. “Hoodie: Uber Engineering’s Incremental Processing Framework on Hadoop”, Prasanna 

Rajaperumal, Vinoth Chandar, Uber Eng blog, 2017
3. “Uber, your Hadoop has arrived: Powering Intelligence for Uber’s Real-time marketplace”, Vinoth 

Chandar, Strata + Hadoop, 2016.
4. “Case For Incremental Processing on Hadoop”, Vinoth Chandar, O’Reily article, 2016
5. “Hoodie: Incremental processing on Hadoop at Uber”, Vinoth Chandar, Prasanna Rajaperumal, 

Strata + Hadoop World, 2017.
6. “Hoodie: An Open Source Incremental Processing Framework From Uber”, Vinoth Chandar,  

DataEngConf, 2017.
7. “Incremental Processing on Large Analytical Datasets”, Prasanna Rajaperumal, Spark Summit, 

2017.
8. “Scaling Uber’s Hadoop Distributed File System for Growth”, Ang Zhang, Wei Yan, Uber Eng blog, 

2018
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https://github.com/uber/hudi
http://eng.uber.com/hoodie/
https://conferences.oreilly.com/strata/strata-ca-2016/public/schedule/detail/47039
https://www.oreilly.com/ideas/ubers-case-for-incremental-processing-on-hadoop
https://conferences.oreilly.com/strata/strata-ca-2017/public/schedule/detail/56511
http://www.dataengconf.com/hoodie-an-open-source-incremental-processing-framework-from-uber
https://databricks.com/session/incremental-processing-on-large-analytical-datasets
https://eng.uber.com/scaling-hdfs/


Further references
9. “Hadoop Infrastructure @Uber Past, Present and Future”, Mayank Bansal, Apache Big Data Europe 

, 2016.
10. “Even Faster: When Presto Meets Parquet @ Uber”, Zhenxiao Luo, Apache: Big Data North 

America, 2017.
11.
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Data @ Uber: Generation 2 (2015-1016)
But soon, a new set of Pain Points showed up:

Gen. 2- Pain Point #1: Reliability of the ingestion
○ Bulk Snapshot based data ingestion stressed source systems
○ Spiky source data (e.g. Kafka) resulted in data being deleted before it can be written out
○ Source were read in streaming fashion but Parquet was written in semi-batch mode

Gen. 2- Pain Point #2: Scalability
○ Small file issue of HDFS started to show up (requiring larger Parquet files)
○ Ingestion was not easily-scalable due to:

■ involving streaming AND/OR batch modes
■ Running mostly on dedicated HW (Needed to set it up in new DCs without YARN)
■ Large sharded Key/Val provided changelogs that needed to be merged/compacted

Gen. 3- Pain Point #3: Queries too slow
○ Single choice of query engine 
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Hadoop

Ingestion
(Batch)

Data @ Uber: Generation 2.5 (2015-1016)

Kafka 8

RDBMS DBs

Key-Val DBs (Sharded)

Vertica
(Data Warehouse)

Ingestion
(Streaming)

Applications:
● ETL
● Business Ops
● Machine 

Learning
● Experiments

Adhoc Analytics:
● City Ops
● Data Scientists

ETL
(Flattened/Modelled Tables)

Hive/Spark/ 
Presto/ 

Notebooks

Flattened/ 
Modelled Tables

Row based
(HBase/ 

Sequence file
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Main Highlights

● Presto added as interactive query engine
● Spark notebooks added to encourage data scientists to use Hadoop
● Simplified architecture: 2-Leg Data Ingestion

○ Get raw data into Hadoop, then do most of work as batch jobs

● Gave us time to stabilize the infrastructure (Kafka,....) & think long-term
● Reliable data ingestion with no data loss

○ since data was streamed into Hadoop with minimum work

Data @ Uber: Generation 2.5 (2015-1016)
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2-Leg data ingestion:

● Leg1:
○ Running as streaming job on dedicated hardware
○ No extra pressure on the source (especially for 

Backfills/Catch-up) 
○ Fast streaming into row-oriented storage - HBase/Sequence file
○ Can run on DCs without YARN etc

● Leg 2:
○ Running as batch jobs in Hadoop
○ Efficient especially for Parquet writing
○ Control Data Quality - 

■ Schema Enforcement - 
■ Cleaning JSON - 
■ Hive Partitioning 

○ File Stitching - 
■ Keeps NN happy & queries performant

Data @ Uber: Generation 2.5 (2015-1016)

Full Snapshot
(HBase)

Snapshot Tables:
- Trips snapshot
- User snapshot

Full dump

DB changelogs
(HDFS) Incremental Tables:

- Changelog history
- Kafka events

Incremental Pull 
(Append-only)

Kafka logs
(HDFS)
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Data @ Uber: Generation 2.5 (2015-1016)
Hive:

● Powerful, scales reliably
● But slow

Vertica:

● Fast
● Can’t cheaply scale to x PB

Spark Notebooks

● Great for Data Scientists to 
prototype/explore data

Presto:

● Interactive queries (fast)
● Deployed at scale and good integration 

with HDFS/Hive
● Doesn’t require flattening unlike Vertica
● Supported ANSI SQL
● Have to improve by adding:

○ Support for geo data
○ Better support for nested data types
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Data @ Uber: Generation 2.5 (2015-1016)
Solved issues from Generation 2:

Gen. 2- Pain Point #1: Reliability of the ingestion -> solved
○ Bulk Snapshot based data ingestion stressed source systems
○ Spiky source data (e.g. Kafka) resulted in data being deleted before it can be written out
○ Source were read in streaming fashion but Parquet was written in semi-batch mode

Gen. 2- Pain Point #2: Scalability -> solved
○ Small file issue of HDFS started to show up (requiring larger Parquet files)
○ Ingestion was not easily-scalable due to:

■ involving streaming AND/OR batch modes
■ Running mostly on dedicated HW (Needed to set it up in new DCs without YARN)
■ Large sharded Key/Val provided changelogs that needed to be merged/compacted

Gen. 2- Pain Point #3: Queries too slow -> solved
○ Limited choice of query engine 
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Data @ Uber: Generation 2.5 (2015-1016)

Key-Val DBs (Sharded)

Ingestion
(Streaming)

ETL
(Flattened/Modelled Tables)

Hive/Spark/ 
PrestoHBase

Upsert

Ingestion
(Batch)

Pain points of snapshot-based DB ingestion:

>100TBs for 
Trips table

Snapshot based ingestion:
Jan 2016: 6 hrs (500 executors)
Aug 2016: 10hrs (1000 executors)

Batch recompute:
8-10 hrs

E2E Fresh data ingestion:
18-24 hours
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But soon, a new set of Pain Points showed up:

Gen. 2.5- Pain Point #1: Scalability
○ HDFS IO pressure since raw data was stored twice (both in row format and Parquet)
○ Data ingestion pipelines became very source-specific with increased maintenance cost

Gen. 2.5- Pain Point #2: Data Latency too high
○ snapshot based ingestion results in delayed fresh data (12-24hrs to get a new snapshot)

■ Even for append-only part, extra hop adds latency
■ Required async stitcher to avoid small file issue

Gen. 2.5- Pain Point #3: Updates became a big problem
○ Updates are natural part of our data

Gen. 2.5- Pain Point #4: Late-arriving data also very common
○ Late-arriving data because of late production time or data getting stuck in the pipeline

Gen. 2.5- Pain Point #5: ETL/ Modelling became the bottleneck
● Since most of ETL/Modelling was snapshot based (running daily off raw tables)
● Need for incremental computation to update modeled tables at hourly rate

Data @ Uber: Generation 2.5 (2015-1016)
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Data @ Uber: Generation 3 (2017-present)
How does Incremental Ingestion in Gen 3 change data freshness/Latency?
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Data @ Uber: Generation 3
What does Incremental Processing mean:

Lambda architecture:
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Data @ Uber: Generation 3
Stream/Batch processing Trade off: 

● Latency
● Completeness
● Cost (Throughput/efficiency)

Operation challenges in Streaming & Batch:

● Projections (Streaming:Easy   Batch:Easy)
● Filtering (Streaming:Easy   Batch:Easy)
● Aggregations (Streaming:Tricky   Batch:Easy)
● Window (Streaming:Tricky   Batch:Easy)
● Joins (Streaming:HARD   Batch:Easy) 55



Data @ Uber: Generation 3
Do we need Streaming, Batch or Incremental?

● Need to investigate your use cases (based on latency vs Completeness)

● Very distinct uses cases for Streaming
● Very distinct use cases for Batch
● A lot of use cases that can benefit from 

incremental mode 
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Data @ Uber: Generation 3: Provide Incremental 
processing

What exactly is Incremental mode?

● Mini-batch jobs that pulls out only changed data
● Provides high completeness (compared to streaming mode)
● Supports all hard operations as any other batch job (like multi-table joins,....)

<1 Sec <5 min <1 hour

Database Stream 
Processing

Incremental 
min-batch Processing Batch Processing
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Data @ Uber: Generation 3: Provide Incremental 
processing

How does Incremental mode help efficiency?

● Read only what you need by using Columnar file formats
● Simple solution for all types of queries (joins, …)
● Consolidation of Compute & Storage for all use case (exploratory, 

interactive,....)
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