UBER

Uber’s Data Journey:
100+ PB with Minute
Latency

Reza Shiftehfar
Hadoop Platform team
reza@uber.com

04.18.2018

Who am |

Reza Shiftehfar

PhD in Computer Science from University of lllinois
@Urbana-Champaign

with Uber since 2014

Founding engineer of the data platform team at Uber
Currently managing the Hadoop Platform team at Uber
Helped scale Uber's data from a few TB to 100+ PB
Helped lower data latency from 24+ hrs to minutes

Agenda

1. Intro to Data @ Uber
2. Data Platform - Past
¢ The beginning of Big Data - Generation 1
¢ The arrival of Hadoop - Generation 2
3. Data Platform - Present
e Let’s rebuild for long term - Generation 3
4. Data Platform - Future
e What’s coming next - Generation 4
5. Lessons learned

UBER

Intro to Data @ Uber:

Uber's Mission

“Transportation as reliable as running
water, everywhere, for everyone”

600+ Cities 75+ Countries

And Growing...

The Impact of Data @ Uber

1. City OPS (~1000s)

e On the ground team who run and scale uber's transportation network

2. Data Scientists and Analysts (~100s)

e Spread across various functional groups (e.g. Marketing Spend, Forecasting)

3. Engineering Teams (~100s)

e Focused on building automated data applications (Fraud Detection, Incentive Payments,
Background Checks,...)

Not long ago (Before 2014)

¢ Data small enough to fit into _ _ _
a few OLTP DBs (MySQL/ Service 1 Service 2 Service 3

Postgresql)

e Users had to access these
DBs individually to play with
the data Postgresql/ MySQL Postgresql/ MySQL

Data size: ~100GB to a few TB
Latency: very fast since it was in a real DB

UBER

Data @ Uber:

The beginning of Big Data - Generation 1
(2014-2015)

The beginning of Big Data - Generation 1 (2014-2015)

Applications:
< Kafka 7 (EMR e ETL/Modelling
City Ops

[]
e Machine Learning
e Experiments

ETL Vertica
(Data Warehouse)

Key-Val DBs Ad hoc Analytics:
(Sharded) e City Ops
Generation 1 (2014-2015) e Data Scientists

Data size: ~10s TB
Latency: 24hrs - 48hrs

RDBMS DBs °

The beginning of Big Data - Generation 1 (2014-2015)

Highlights Gen. 1:

Scalability grew to ~10s TB

Global view of all data in one place

Vertica support of SQL made it very popular

More number of users could query the data in

parallel (~100s)

e Applications started to build products around
data (e.g. ML, Experiment,...)

e Users started to run ad hoc queries to better run

the business or explore data

10

The beginning of Big Data - Generation 1 (2014-2015)

Problems/ Limitations:
Gen.1- Pain Point #1: Data Reliability:

e Word-of-mouth Schema communication
e Json data, breaking pipelines

Gen.1- Pain Point #2: Data Scalability:

e [Exponential grow of data faster than expected

I. Had to delete older data to free up space for new incoming data
e Many parts were not horizontally scalable (e.g. Kafka 7, Celery workers,...)
e Warehouse tool (Vertica) was used as Data Lake

I. Raw data piling up in Vertica

ii. Data Modelling happening in Vertica

11

The beginning of Big Data - Generation 1 (2014-2015)

Problems/ Limitations (cont.) :
Gen.1- Pain Point #3: Fragile ingestion:

e Multiple ingestion of the same data due to Transformation in the pipeline

I. Extra pressure on the source

ii. Multiple copies of the same data in Vertica
e ETL jobs source-dependent, stand alone jobs/scripts, hard to add new data sets/types
e Painful Backfilling because of projections & transformation in the pipelines

12

UBER

Data @ Uber:

The arrival of Hadoop - Generation 2
(2015-2016)

The arrival of Hadoop - Generation 2 (2015-2016)

< Kafka 8 (

ETL
(Flattened/ Modelled Tables)

1

Applications:
e ETL/ Modelling
e City Ops
e Machine Learning
e Experiments

ey
Ingestion Schema {////
(EL) enforced

Parquet Hadoop

Hive/ Spark/
Presto/
Notebooks

Key-Val DBs
(Sharded)

Flattened/ Modelled
Tables (re¢ent data)

Verti
Generation 2 (2015-2016) ertica

(Data Warehouse)
Data size: ~10 PB

Latency: 24hrs

RDBMS DBs

14

Ad hoc Analytics:
e City Ops
e Data Scientists

The arrival of Hadoop - Generation 2 (2015-2016)

Highlights Gen. 2:

All raw data is stored in Hadoop Data Lake
Data stored as Columnar Parquet format

e More efficient storage

e More efficient queries
e All ETL/Modelling happens in Hadoop
e Subset of data transferred to warehouse

e Only flattened selected recent dates

e Presto added as interactive query engine
e Spark notebooks added to encourage data
scientists to use Hadoop

15

The arrival of Hadoop - Generation 2 (2015-2016)

Big Wins:

e Hadoop became the source-of-truth for all data
e 100% of All analytical data in one place
e Hadoop powered critical Business Operations
e Partner Incentive Payments, Fraud
e Unlocked the real power of data
e Gave us time to stabilize the infrastructure
(Kafka,....) & think long-term

Some Numbers (early 2016): . m i *Jl"t,(,';
R 3 bk, ,*‘ i _;';“ el " : S

~10 PB in HDFS i

~10 TB/day new data

~10k vcores

~100k daily batch jobs
And growing...

16

The arrival of Hadoop - Generation 2 (2015-2016)

Solved issues from Generation 1:

Gen1—PainPeint##1DateRetiabiity—Sehermaissue -> Solved

e Schematized All Data (Json -> Parquet)
e Build a new central Schema-Service with client libraries for auto integration

Gen-1—PainPoint#2: Date-Seatabiiity -> Solved

e All Infrastructure horizontally scale
e Kafka 8 & Hadoop were introduced

Gen1—PainPeint#3Fragitetrgeston -> Solved

e Hadoop Data Lake was added
i. Store raw data in original nested format in Hadoop
e Data modelling moved to Hadoop

17

The arrival of Hadoop - Generation 2 (2015-2016)

Why data latency remains at 24 hours?

ETL
(Flattened/Modelled Tables)

Snapshot based ingestion: T
>100 TBs for Jan 2016: 6 hrs (500 executors) 5| < Batch recompute:
Trips table Aug 2016: 10hrs (1000 executors) - 8-10 hrs "

% q
Snapshot Ingestion /'//// Hive/Spark/

Presto/
(Batch) Parquet Notebooks
Upsert
| Ingestif)n
(Streaming) Generation 2 (2015-2016)
Data size: ~10 PB
Key-Val DBs (Sharded) Latency: 24hrs

E2E data latency:
18-24 hours 18

<z
T~

A
>

The arrival of Hadoop - Generation 2 (2015-2016)

Problems/ Limitations:
Gen.2- Pain Point #1: Scalability:

e Too many small files in HDFS (required async stitcher)
e Source-specific data ingestion pipelines increased maintenance cost

Gen.2- Pain Point #2: Data Latency too high:
e snapshot based ingestion results in 24hrs data latency

Gen.2- Pain Point #3: Updates became a big problem:
e Updates/late-arriving-data are natural part of our data

Gen.2- Pain Point #4: ETL/ Modelling became the bottleneck:
e ETL/Modelling was snapshot based (running daily off raw tables)

19

UBER

Data @ Uber:

Let’s rebuild for long term - Generation 3
(2017-present)

Let’s rebuild for long term - Generation 3 (2017-present)

Some Numbers (early 2017):

~100+ PB in HDFS data
~100k vcores

~100k Presto queries/day
~1000+ Spark apps/day
~20k Hive queries/day
And still growing...

21

Let’s rebuild for long term - Generation 3 (2017-present)

Motivation for rebuilding:

e Interactive Query engines -> Hadoop data extremely popular
e No more fire-fighting -> allowed study of our real needs

Problems to solve:
e Gen.2- Pain Point #1: HDFS Scalability

e Namenode will always be the bottleneck
e Small files are the killer
e Benefit from ViewFS and Federation to scale
e Controlling small files and moving part of data to a separate cluster (e.g. HBase, Yarn
app logs) can let you get to 100+ PB
e See our recent Engineering Blog post on this

22

https://eng.uber.com/scaling-hdfs/

Let’s rebuild for long term - Generation 3 (2017-present)

Problems to solve:

 Gen.2- Pain Point #2: Faster data in Hadoop
e Need fully incremental ingestion of data

e Gen.2- Pain Point #3: Support for Updates/Deletes in Hadoop/Parquet

e Need to support Update/Deletion during ingestion of incremental changelogs
e (Qut data has large number of columns with nested data support -> Parquet stays

e Gen.2- Pain Point #4: Faster ETL/ Modelling

e ETL has to become incremental too
e Need to allow users to pull out only changes incrementally
e Have to support all different query engines (Hive, Presto, Spark,...)

23

Let’s rebuild for long term - Generation 3 (2017-present)

Update/late-arriving data is natural:

Incremental pull

(every 30 min)

Our largest datasets
stored in key-value
sharded DBs

New Trip Data
Existing Trip Data
Updated Trip Data

0as

Ingestion
(Batch)

24

2010-2014 e
partition L IrrIrIno
20150xx (0 00 08 O (0 @8
partition el I 1
2016iixx_, (DEEC]EE
partition SO,
2017/xxX/XX C el el 1
ZuCanaN | =l | [=
2018/xX/XX @eC0Odd
partition 1 1 1 1 |

Data partitioned by trip start date in Hadoop
(at day-level granularity)

Let’s rebuild for long term - Generation 3 (2017-present)

What did we build to address these needs?

e Built Hudi: Hadoop Upserts anD Incremental
e Storage abstraction to:

* Apply upsert/delete on existing Parquet data Normal Table
in Hadoop (Hive/ Presto/ Spark)

e Pull out changed data incrementally T
e Spark based library:
e Scales horizontally like any Spark job
e Only relies on HDFS Update/ Delete/ Large Incr. Pull
e Itis open-sourced (Hudi on Github) Insert records™> [ERCICECLIM— (Hive/ Spark/

in HDFS Presto)

25

https://github.com/uber/hudi

Let’s rebuild for long term - Generation 3 (2017-present)

Incremental ingestion in Gen. 3:

ETL
(Flattened/Modelled Tables)
f N
_ Incremental ingestion: < <30 min
- <30min to get in new data/updates Increrhental 1
ngelogs Pyl

Key-Val DBs

(Sharded) RN Ingestion Hive/Spark/
Kafka (Batch) Update Presto/
Parquet Notebooks

Delete

Hudi

Generation 3 (2017-present)
Data size: ~100 PB

Latency: <30min raw data

RDB E2E Fresh data ingestion: <1 hr modelled
<30 min for raw data Tables

A
Y

<1 hour for Modellggg Tables

Let’s rebuild for long term - Generation 3 (2017-present)

What is Incremental Processing:

e Traditional A architecture provides: Streaming vs Batch solutions

e That assumes append-only immutable data
e Processing based on timestamp (usually skips late-arriving data)
e Incremental Processing is mini-batch jobs that pulls out only changed data

e This gets you all the recently appended data as well as old changed/updated records
e Provides high completeness (compared to streaming mode)

e Processing no longer limited by updates/deletes or late-arriving data

e |s abatch job and supports full batch functionality (e.g. joins,....)

Database S”ea”.” , el , Batch Processing
Processing min-batch Processing

| | | | =

<1 Sec <5 min <1 hour

27

Let’s rebuild for long term - Generation 3 (2017-present)

Stream/Batch processing Trade off:

e [atency
e Completeness
e (Cost (Throughput/efficiency)

Study your use case based on these trade off

-

Latency

Day

Hours

1 Hour

<30 Mins

<10 Mins

<1 Min

A

’ Dashboards H ML Features ‘

Surge Signals

Moot; Batch
. I Backfill Pipelines ‘

Data Science ‘

’ Experimentation I

ML Features

Stream : l Incentive Payments ‘Incrsmental

I Deeper Dashboards ‘

- | Fraud Detection

>

Completeness

MacBook Air

28

Let’s rebuild for long term - Generation 3 (2017-present)

Standardized Hive raw data model:
Hive Partial-Row Changelog table:

Partitionin

e View 1: Merged Snapshot table

row_partition
9]row_keys|Column a|Column b | “wigime str

e View 2: Changelog history table "lo' 1 5
r a -

t1 r1 - b t0

12 r1 = c t0

3 r1 d - t0

User input for storage Partial-row Changelogs:
- N 1) (r1, c1:a) time:t0

1) put (r1, c1:a) time:t0 DataStore 2) (r1, c2:b) time:t1

2) put (r1, c2:b) time:t1 3) (r1, c2:c) time:t2

2) put (r1, c2:c) time:t2 4) (r1, c1:d) time:t3

2) put (r1, c1:d) time:t3

Hive Full-Row Snapshot table:

row_keys Column b >artitiont
miind | Column a | “dn,:f;',r,'g| row_keys |Column a | Column b

1 = A ‘0‘”’/")’

d c d c

29

Let’s rebuild for long term - Generation 3 (2017-present)

Generic Any-to-Any Data platform (To be open-sourced soon)

Schema-Service

Kafka logging
Library

Sl-lngli/ Analytical
Presto/ data Users
Key-Value DBs Notebooks (Direct Access)

MySQL/ Cassandra

Postgresql I Di |
ngestion . ispersa
Service Anggtt;cal Service AWS S3

Cassandra
ElasticSearch

Hudi file format

ElasticSearch
30

UBER

Data @ Uber:

What’s coming next - Generation 4
(Ongoing effort)

What’s coming next - Generation 4 (Ongoing effort)

Are we done? Any remaining items?

1. Data Quality is still a concern:

e Further unification of Hadoop Ingestion with strict contract with Storage team
e Expand schema-service beyond type/structural check and into semantic checks

2. Still Need faster data access
e ~5-10 min Hadoop data for mini-batching to compete with Streaming
3. Efficiency is the next big monster

e Don’t limit yourself to Hadoop. Go for the entire compute resources
e Unified resource scheduler for Hadoop and beyond (Mesos, Yarn and now Peloton)
e See our presentation at “Hadoop Infrastructure@Uber Past ., Present and Future”

4. Hoodie is still actively being developed

e Get rid of sensitivity with respect to the ratio of update/delete vs insert
e Provide large Parquet file (1+ GB) with data latency of 5-10min

32

https://apachebigdataeu2016.sched.com/event/8U35/keynote-hadoop-infrastructure-uber-past-present-and-future-mayank-bansal-sr-engineer-uber

What’s coming next - Generation 4 (Ongoing effort)

Hoodie Storage 1.0:

Copy-on-write solution

Rewriting Parquet files on updates/deletes

Output Partition + Row_Key are required

1GB file very expensive

Supports per partition index
Can we get rid of output partition?

Hoodie Storage 1.0 (Copy-On-Write):

f =
3
o
a

(r1, c1:v1, c2:v2)
(r2, c1:v3, c2:v4)
(r3, c1:v5, c2:v6)

Batch 1 of
hangelogs
(=l

B
3c
B

, ¢1:v7, c2:v8)

'A‘..
-
-

Ingestion
Job

Batch 2 of

Changelogs 2 Changelogs
]

(using
Hoodie)

(r1, c1:v9, c2:v10)
(r2, c1:v11, c2:v12)

A

! Batch3of =

=
3
3
-
=

(r1, c1:v13, c2:vi4)
(r3, c1:v15, c2:v16)

Batch 4 of
Changelogs

wW
w

file1.parquet.vi1

r1_Jei:vifc2:v2)
c1:v3] c2:vé]
r3 Jc1:v5| c2:v6

file1.parquet.v3
r1 Ic :v9
ci:vi1

r3 Jc1:v5 |c2:v6
|

file1.parquet.v4

c1:vi3fc2:vid)
c1:v11fc2:v12)
c1:v15jc2:v16)

B B et

What’s coming next - Generation 4 (Ongoing effort)

Hoodie Storage 2.0:

Merge-on-Read solution
Have row-based delta file + Parquet file
e Merge only when the cost of rewrite
is amortized
Merge on Query side
e Provides 5-10min hadoop data

Add Global Index

Hoodie Storage 2.0 (Async. Compaction):

Time t1:

atch 1 of
Changelogs

m <

Time t2:

-I:(r1. c1:v7, c2:v8)

2]
S

Batch 2 o
Changelo

=
3
®

Batch 3 of
Changelogs

=
3
o

Batch 4 of

Changelogs

|

(r1, c1:v1, c2:v2)
(r2, c1:v3, c2:v4)
(r3, c1:v5, c2:v6)

t3:

(r1, c1:v9, c2:v10)
(r2, c1:v11, c2:v12)

t4:

Rr1, c1:v13, c2:v14)

A

—

34

(r3, c1:v15, c2:v1 6)_>

file1.parquet.v1

r1_Jeivi] c2:v2)
c1:v3] c2:v4]
r3 Jc1:v5|c2:v6
|

file1_change.avro

(r1, c1:v7, c2:v8)
(r1, c1:v9, c2:v10)
(r2, c1:v11, c2:v12)
(r1, c1:v13, c2:v14)
(r3, c1:v15, c2:v16)

Ingestion
Job
(using
Hoodie)

file1.parquet.v2

Mpactiop at
’ntewa,s

Async Co,
desireq

What’s coming next - Generation 4 (Ongoing effort)

Be flexible with users:
e Hudi’'s supported different Storage Types and Views

. A
Storage Type Supported Views
o | | REALTIME
E
Storage 1.0 Read Optimized, ‘é’
(Copy On Write) Changelog View §
5
e
s
Read Optimized, (¢] READ
Storage 2.0
¢ RealTime, OPTIMIZED
(Merge On Read) :
Changelog View Data Latency

35

UBER

Data @ Uber:
Lessons learned

Data @ Uber - Lessons Learned

2.

Investigating your data/use cases and finding the required primitives pays

back huge
e With GDPR requirement, Having Update/Delete on the entire Hadoop dataset is life-saving

Data Quality will be an ongoing effort

e Enforce schema (mandatory and pre-defined) as early as possible
e Move beyond type checking and into semantic checking (define your own data types)
e This is the key distinction between garbage data and a real data-driven company

Standardize everything as soon as possible

e Don’'t make exceptions (it always comes back at you)
e This is the key to having reliable Big data that can scale while being efficient
e This is the key to have happy data users and to be able to educate them on how to use your data

37

Data @ Uber - Lessons Learned

4. Ensure you have a solid data retention policy as well as a standard data model

as early as possible
e Retention from beginning saves you $ on wasted space and educates users to not waste
5. Track all related data metadata
e \Who owns what data, data lineage, data content, data access,...

6. Investin a good data pipeline monitoring

e Define your terminology and stick to it (Ereshness, Latency, Completeness, Late-arriving-data,...)
e Detects many corner cases and lets you solve the issue before it affects your users

/. Minimize your dependency on user-defined values

e User-defined values always break your job
e Replace them by system-defined values as much as possible (e.g. user define ts vs system ts)

8. Pay attention to notion of time in your data and educate users on those

38

Hadoop Platform @ Uber

Want to be part of Gen.4 or
beyond?

e Come talk to me

o Office Hours: 11:30am - 12:10 pm

e Positions in both SF & Palo Alto

o email me: reza@uber.com

gconomy

& W

$333 $7.89

e 8321

REQUEST POOL

39

mailto:reza@uber.com

Uber’s Data Journey:
100+ PB with Minute Latency

UBER

reza@uber.com

Further references

1. Open-Source Hudi Project on Github

2. “Hoodie: Uber Engineering’s Incremental Processing Framework on Hadoop”, Prasanna
Rajaperumal, Vinoth Chandar, Uber Eng blog, 2017

3. “Uber, your Hadoop has arrived: Powering Intelligence for Uber's Real-time marketplace”, Vinoth
Chandar, Strata + Hadoop, 2016.

4. “Case For Incremental Processing on Hadoop”, Vinoth Chandar, O’Reily article, 2016

5. “Hoodie: Incremental processing on Hadoop at Uber”, Vinoth Chandar, Prasanna Rajaperumal,
Strata + Hadoop World, 2017.

6. “Hoodie: An Open Source Incremental Processing Framework From Uber”, Vinoth Chandair,
DataEngConf, 2017.

7. “Incremental Processing on Large Analytical Datasets”, Prasanna Rajaperumal, Spark Summit,
2017.

8. “Scaling Uber’s Hadoop Distributed File System for Growth”, Ang Zhang, Wei Yan, Uber Eng blog,
2018

41

https://github.com/uber/hudi
http://eng.uber.com/hoodie/
https://conferences.oreilly.com/strata/strata-ca-2016/public/schedule/detail/47039
https://www.oreilly.com/ideas/ubers-case-for-incremental-processing-on-hadoop
https://conferences.oreilly.com/strata/strata-ca-2017/public/schedule/detail/56511
http://www.dataengconf.com/hoodie-an-open-source-incremental-processing-framework-from-uber
https://databricks.com/session/incremental-processing-on-large-analytical-datasets
https://eng.uber.com/scaling-hdfs/

Further references

9. “Hadoop Infrastructure @Uber Past, Present and Future”, Mayank Bansal, Apache Big Data Europe
, 2016.
10. “Even Faster: When Presto Meets Parquet @ Uber”, Zhenxiao Luo, Apache: Big Data North
America, 2017.

11.

42

https://apachebigdata2017.sched.com/event/9zvn/even-faster-when-presto-meets-parquet-uber-zhenxiao-luo-uber

UBER

Extra slides

Data @ Uber: Generation 2 (2015-1016)

But soon, a new set of Pain Points showed up:

Gen. 2- Pain Point #1: Reliability of the ingestion

o Bulk Snapshot based data ingestion stressed source systems
o Spiky source data (e.g. Kafka) resulted in data being deleted before it can be written out
o Source were read in streaming fashion but Parquet was written in semi-batch mode

Gen. 2- Pain Point #2: Scalability

O Small file issue of HDFS started to show up (requiring larger Parquet files)

o Ingestion was not easily-scalable due to:
m involving streaming AND/OR batch modes
m Running mostly on dedicated HW (Needed to set it up in new DCs without YARN)
m Large sharded Key/Val provided changelogs that needed to be merged/compacted

Gen. 3- Pain Point #3: Queries too slow
o Single choice of query engine

44

Data @ Uber: Generation 2.5 (2015-1016)

Applications:
[J

ETL
Kafka 8 ETL e Business Ops
(Flattened/Modelled Tables) e Machine

Learning
J [e Experiments
II Ingestion 277, Hive/Spark/
Ingestion (Batch) '// . Presto/
(Streaming) Row based Parquet Notebooks
(HBase/ Hadoop
Sequence file
Key-Val DBs (3harded) Flattened/
Modelled Tables Adhoc Analytics:
e City Ops

e Data Scientists

Vertica

(Data Warehouse) 45

RDBMS DBs

Data @ Uber: Generation 2.5 (2015-1016)

Main Highlights

Presto added as interactive query engine
Spark notebooks added to encourage data scientists to use Hadoop

Simplified architecture: 2-Leg Data Ingestion
o Get raw data into Hadoop, then do most of work as batch jobs
Gave us time to stabilize the infrastructure (Kafka,....) & think long-term

Reliable data ingestion with no data loss
o since data was streamed into Hadoop with minimum work

46

Data @ Uber: Generation 2.5 (2015-1016)

2-Leg data ingestion: Full Snapshot | Fulldump | Snapshot Tables:
(HBase) - Trips snapshot
- User snapshot

o Legl:

O Running as streaming job on dedicated hardware

O No extra pressure on the source (especially for
Backfills/Catch-up)

O Fast streaming into row-oriented storage - HBase/Sequence file
O Can run on DCs without YARN etc

o Lleg2: DB changelogs
O Running as batch jobs in Hadoop (HDFS)
O Efficient especially for Parquet writing
O Control Data Quality -

Incremental Tables:
- Changelog history
- Kafka events

Incrementa
(Append-o

m Schema Enforcement - Kafka logs
m Cleaning JSON - (HDFS)
m Hive Partitioning

O File Stitching -

BH Keeps NN happy & queries performant 47

Data @ Uber: Generation 2.5 (2015-1016)

Hive:

e Powerful, scales reliably
e But slow

Vertica:

e [ast
e Can’t cheaply scale to x PB

Spark Notebooks

e Great for Data Scientists to
prototype/explore data

Presto:

Interactive queries (fast)

Deployed at scale and good integration
with HDFS/Hive

Doesn’t require flattening unlike Vertica
Supported ANSI SQL

Have to improve by adding:
o Support for geo data
o Better support for nested data types

48

Data @ Uber: Generation 2.5 (2015-1016)

Solved issues from Generation 2:

Gen. 2- Pain Point #1: Reliabilityofthetnrgesten -> solved
Btk Sranshot based-data . |

Gen. 2- Pain Point #2: Sealabiiity -> solved
Sttt fHDES I I f oo - fres
o Ingestion was not easily-scalable due to:
ol e ANDICR batel I

49

Data @ Uber: Generation 2.5 (2015-1016)

Pain points of snapshot-based DB ingestion:

ETL
(Flattened/Modelled Tables)

Snapshot based ingestion:
>100TBs for Jan 2016: 6 hrs (500 executors) Batch recompute:
Trips table Aug 2016: 10hrs (1000 executors) 8-10 hrs
. %% |
Ingestion o// Hive/Spark/
HBase (Batch) Parquet Presto
Upsert |
| Ingestion
(Streaming)

Key-Val DBs (Sharded)

E2E Fresh data ingestion:
18-24 hours

50

Data @ Uber: Generation 2.5 (2015-1016)

But soon, a new set of Pain Points showed up:

Gen. 2.5- Pain Point #1: Scalability

o HDFS IO pressure since raw data was stored twice (both in row format and Parquet)
o Data ingestion pipelines became very source-specific with increased maintenance cost

Gen. 2.5- Pain Point #2: Data Latency too high

O snapshot based ingestion results in delayed fresh data (12-24hrs to get a new snapshot)
m Even for append-only part, extra hop adds latency
m Required async stitcher to avoid small file issue
Gen. 2.5- Pain Point #3: Updates became a big problem

o Updates are natural part of our data
Gen. 2.5- Pain Point #4: Late-arriving data also very common
o Late-arriving data because of late production time or data getting stuck in the pipeline

Gen. 2.5- Pain Point #5: ETL/ Modelling became the bottleneck

e Since most of ETL/Modelling was snapshot based (running daily off raw tables) 51
e Need for incremental computation to update modeled tables at hourly rate

Let’s rebuild for long term - Generation 3 (2017-present)

Any work-around for snapshot-based ingestion?
1. Directly Query HBase

e Range scan will make it a bad fit
e | ack of support for nested data
e Significant operational overhead for 100 PB

2. Don’t support Snapshot view and only provide logs

e Users need the merged view and will have to do it in their queries which makes it inefficient
e Merging can be done inconsistency resulting in data correctness

3. Use specialized analytical DBs

e (Can’t bypass HDFS since we still need to join with other data in HDFS
e Not all data fits into memory and many queries will fail

e | eads to lambda architecture issue and multiple copies of the same data
52

Data @ Uber: Generation 3 (2017-present)

How does Incremental Ingestion in Gen 3 change data freshness/Latency?

Raw Tables Modeled Tables
Available in Hive Available in Hive

|< <30 min | 15 min (Modeling Time) >|

Key-Val /—\
DBs

HDFS | 4 Y HDFS | 4
Ingestion job | Hudi Modelling | Hoodie |
Kafka (Batch) > Raw v Incr. Read Logic (Upsert) Modelled | ,
Parquet E (E) W) (L) Parquet E
File >, File

: Other DBs \ J

<1 min <1min <15 min
|< > | <t >

<45 min

53

Data @ Uber: Generation 3

What does Incremental Processing mean:

Lambda architecture:

.--//.‘.\
A /:>e$ /
Speed (Real-Time) .""V/Q(f(/‘/
Processing -

Batch Processing

Speed (Real-Time)
Processing

Batch Processing

54

Data @ Uber: Generation 3

Stream/Batch processing Trade off:

e Latency
e Completeness
e Cost (Throughput/efficiency)

Operation challenges in Streaming & Batch:

Projections (Streaming:Easy Batch:Easy)
Filtering (Streaming:Easy Batch:Easy)
Aggregations (Streaming:Tricky Batch:Easy)
Window (Streaming:Tricky Batch:Easy)
Joins (Streaming:HARD Batch:Easy)

55

Data @ Uber: Generation 3

Do we need Streaming, Batch or Incremental?

e Need to investigate your use cases (based on latency vs Completeness)

A .
Latency Moot r Batch
Day ’ Backfill Pipelines
Data Science }
Hours Experimentation . . .
: i ML Features e Very distinct uses cases for Streaming
— SI S ltP : I . Py Very distinct use Casesfor Batch
el __ncen ive Payments | /ncrementa .
3 e Alot of use cases that can benefit from
4 eeper Dashboards .
<30 Mins ; incremental mode
: | Fraud Detection tasterEll
<10 Mins Dashboards ‘ ’ ML Features ‘

~
Completeness

Data @ Uber: Generation 3: Provide Incremental
processing

What exactly is Incremental mode?

e Mini-batch jobs that pulls out only changed data
e Provides high completeness (compared to streaming mode)
e Supports all hard operations as any other batch job (like multi-table joins,....)

Database Strea”.“ : Incremental , Batch Processing
Processing min-batch Processing

I | | =

<1 Sec <5 min <1 hour

57

Data @ Uber: Generation 3: Provide Incremental

processing

How does Incremental mode help efficiency?

e Read only what you need by using Columnar file formats

e Simple solution for all types of queries (joins,

)

e Consolidation of Compute & Storage for all use case (exploratory,

interactive,....) o

Read all
nKaka | [>
(with 1000 fields each) 1000 fickls

Parquet Files on Read only
o |) | Rl

(with 1000 fields each)

10 Cost

Amount of bytes

read is 100x
smaller

[—

—>

Decode
1000 fields
into
Memory

Record
Assembly

CPU Cost
Typically lower to
assemble 1/100th of
total fields.

58

