
Real-time Data Pipelines with

Structured Streaming in

DataEngConf 2018
18th April, San Francisco

Tathagata “TD” Das
@tathadas

About Me

Started Spark Streaming project in AMPLab, UC Berkeley

Currently focused on building Structured Streaming

PMC Member of

Engineer on the StreamTeam @
"we make all your streams come true"

SQLStreaming ML Graph

Applications

YARN

EC2

Environments

unified processing
engine

Data Sources

Data Pipelines – 10000ft view

Data
Warehouse

Dump ETL

structured data

Data Lake

unstructured
data dump

unstructured
data streams

Analytics

Messy data not ready
for analytics

DATALAKE1

DW3

DW2

DW1
Incidence
Response

Alerting

Reports

Data Pipeline @ Fortune 100 Company

Security Infra
IDS/IPS, DLP, antivirus, load
balancers, proxy servers

Cloud Infra & Apps
AWS, Azure, Google Cloud

Servers Infra
Linux, Unix, Windows

Network Infra
Routers, switches, WAPs,
databases, LDAP

Trillions of Records Separate warehouses for
each type of analytics

Dump Complex ETL

Hours of delay in accessing data
Very expensive to scale

Proprietary formats
No advanced analytics (ML)

DATALAKE2

Incidence
Response

Alerting

Reports

STRUCTURED
STREAMING

Dump Complex
ETL

DELTA SQL, ML,
STREAMING

New Pipeline @ Fortune 100 Company

Data usable in minutes/seconds
Easy to scale
Open formats

Enables advanced analytics

STRUCTURED
STREAMING

you
should not have to

reason about streaming

you
should write simple queries

&

Spark
should continuously update the answer

Treat Streams as Unbounded Tables

data stream unbounded input table

new data in the
data stream

=
new rows appended
to a unbounded table

Anatomy of a Streaming Query

Example

Read JSON data from Kafka

Parse nested JSON

Store in structured Parquet table

Get end-to-end failure guarantees

ETL

Anatomy of a Streaming Query
spark.readStream.format("kafka")

.option("kafka.boostrap.servers",...)

.option("subscribe", "topic")

.load()

Source
Specify where to read data from

Built-in support for Files / Kafka /
Kinesis*

Can include multiple sources of
different types using join() / union()

*Available only on Databricks Runtime

returns a
DataFrame

https://databricks.com/product/databricks-runtime

static data =
bounded table

streaming data =
unbounded table

Single
API !

DataFrameó Table

DataFrame/Dataset
SQL

spark.sql("
SELECT type, sum(signal)
FROM devices
GROUP BY type

")

Most familiar to BI Analysts
Supports SQL-2003, HiveQL

val df: DataFrame =
spark.table("device-data")

.groupBy("type")

.sum("signal"))

Great for Data Scientists familiar
with Pandas, R Dataframes

DataFrame Dataset

val ds: Dataset[(String, Double)] =
spark.table("device-data")
.as[DeviceData]
.groupByKey(_.type)
.mapValues(_.signal)
.reduceGroups(_ + _)

Great for Data Engineers who
want compile-time type safety

Choose your hammer for whatever nail you have!
Same semantics, same performance

Anatomy of a Streaming Query
spark.readStream.format("kafka")

.option("kafka.boostrap.servers",...)

.option("subscribe", "topic")

.load()

Kafka DataFrame
key value topic partition offset timestamp

[binary] [binary] "topic" 0 345 1486087873

[binary] [binary] "topic" 3 2890 1486086721

Anatomy of a Streaming Query
spark.readStream.format("kafka")

.option("kafka.boostrap.servers",...)

.option("subscribe", "topic")

.load()

.selectExpr("cast (value as string) as json")

.select(from_json("json", schema).as("data"))

Transformations

Cast bytes from Kafka records to a
string, parse it as a json, and
generate nested columns

100s of built-in, optimized SQL
functions like from_json

user-defined functions, lambdas,
function literals with map, flatMap…

Anatomy of a Streaming Query

Sink
Write transformed output to
external storage systems

Built-in support for Files / Kafka

Use foreach to execute arbitrary
code with the output data

Some sinks are transactional and
exactly once (e.g. files)

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")

Anatomy of a Streaming Query

Processing Details

Trigger: when to process data
- Fixed interval micro-batches
- As fast as possible micro-batches
- Continuously (new in Spark 2.3)

Checkpoint location: for tracking the
progress of the query

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()

DataFrames,
Datasets, SQL

Logical
Plan

Read from
Kafka

Project
device, signal

Filter
signal > 15

Write to
Parquet

Spark automatically streamifies!

Spark SQL converts batch-like query to a series of incremental
execution plans operating on new batches of data

Kafka
Source

Optimized
Operator
codegen, off-

heap, etc.

Parquet
Sink

Optimized
Plan

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()

Series of Incremental
Execution Plans

pr
oc

es
s

ne
w

 d
at

a

t = 1 t = 2 t = 3

pr
oc

es
s

ne
w

 d
at

a

pr
oc

es
s

ne
w

 d
at

a

pr
oc

es
s

ne
w

 d
at

a

t = 1 t = 2 t = 3

pr
oc

es
s

ne
w

 d
at

a

pr
oc

es
s

ne
w

 d
at

a

Fault-tolerance with Checkpointing

Checkpointing

Saves processed offset info to stable storage
Saved as JSON for forward-compatibility

Allows recovery from any failure
Can resume after limited changes to your
streaming transformations (e.g. adding new
filters to drop corrupted data, etc.)

end-to-end
exactly-once
guarantees

write
ahead

log

Anatomy of a Streaming Query

ETL

Raw data from Kafka available
as structured data in seconds,
ready for querying

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()

3x
faster

Structured Streaming reuses
the Spark SQL Optimizer

and Tungsten Engine

Performance: Benchmark
40-core throughput

700K

22M

65M

0
10
20
30
40
50
60
70

Kafka
Streams

Apache Flink Structured
Streaming

M
ill

io
ns

 o
f r

ec
or

ds
/s

More details in our blog post

cheaper

https://databricks.com/blog/2017/10/11/benchmarking-structured-streaming-on-databricks-runtime-against-state-of-the-art-streaming-systems.html

Business Logic independent of Execution Mode

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()

Business logic
remains unchanged

Business Logic independent of Execution Mode

.selectExpr("cast (value as string) as json")

.select(from_json("json", schema).as("data"))
Business logic
remains unchanged

Peripheral code decides whether
it’s a batch or a streaming query

spark.read.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()

.write

.format("parquet")

.option("path", "/parquetTable/")

.load()

Business Logic independent of Execution Mode
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))

Batch

high latency
(hours/minutes)

execute on-demand

high throughput

Micro-batch
Streaming

low latency
(seconds)

efficient resource allocation

high throughput

Continuous**
Streaming

ultra-low latency
(milliseconds)

static resource allocation

**experimental release in Spark 2.3, read our blog

https://databricks.com/blog/2018/03/20/low-latency-continuous-processing-mode-in-structured-streaming-in-apache-spark-2-3-0.html

Event time Aggregations

Windowing is just another type of grouping in Struct. Streaming

number of records every hour

Support UDAFs!

parsedData
.groupBy(window("timestamp","1 hour"))
.count()

parsedData
.groupBy(

"device",
window("timestamp","10 mins"))

.avg("signal")

avg signal strength of each
device every 10 mins

Stateful Processing for Aggregations

Aggregates has to be saved as
distributed state between triggers

Each trigger reads previous state and
writes updated state

State stored in memory,
backed by write ahead log in HDFS

Fault-tolerant, exactly-once guarantee!

pr
oc

es
s

ne
w

 d
at

a

t = 1

sink

src

t = 2

pr
oc

es
s

ne
w

 d
at

a

sink

src

t = 3

pr
oc

es
s

ne
w

 d
at

a

sink

src

state state

write
ahead

log

state updates
are written to
log for checkpointing

state

Automatically handles Late Data

12:00 - 13:00 1 12:00 - 13:00 3

13:00 - 14:00 1

12:00 - 13:00 3

13:00 - 14:00 2

14:00 - 15:00 5

12:00 - 13:00 5

13:00 - 14:00 2

14:00 - 15:00 5

15:00 - 16:00 4

12:00 - 13:00 3

13:00 - 14:00 2

14:00 - 15:00 6

15:00 - 16:00 4

16:00 - 17:00 3

13:00 14:00 15:00 16:00 17:00 Keeping state allows
late data to update
counts of old windows

red = state updated
with late data

But size of the state increases indefinitely
if old windows are not dropped

Watermarking

Watermark - moving threshold of
how late data is expected to be
and when to drop old state

Trails behind max event time
seen by the engine

Watermark delay = trailing gap

event time

max event time

watermark data older
than

watermark
not expected

12:30 PM

12:20 PM

trailing gap
of 10 mins

Watermarking

Data newer than watermark may
be late, but allowed to aggregate

Data older than watermark is
"too late" and dropped

Windows older than watermark
automatically deleted to limit the
amount of intermediate state

max event time

event time

watermark

late data
allowed to
aggregate

data too
late,

dropped

watermark
delay
of 10 mins

Watermarking

max event time

event time

watermark

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()

late data
allowed to
aggregate

data too
late,

dropped

Useful only in stateful operations

Ignored in non-stateful streaming
queries and batch queries

watermark
delay
of 10 mins

Watermarking

data too late,
ignored in counts,
state dropped

Processing Time12:00

12:05

12:10

12:15

12:10 12:15 12:20

12:07

12:13

12:08

Ev
en

t T
im

e
12:15

12:18

12:04

watermark updated to
12:14 - 10m = 12:04
for next trigger,
state < 12:04 deleted

data is late, but
considered in
counts

system tracks max
observed event time

12:08

wm = 12:04

10
 m

in

12:14

More details in my blog post

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html

Other Interesting Operations

Streaming Deduplication

Joins
Stream-batch joins
Stream-stream joins

Arbitrary Stateful Processing
[map|flatMap]GroupsWithState

stream1.join(stream2, "device")

parsedData.dropDuplicates("eventId")

See my previous Spark Summit talk and blog posts (here and here)

ds.groupByKey(_.id)
.mapGroupsWithState

(timeoutConf)
(mappingWithStateFunc)

https://databricks.com/session/deep-dive-into-stateful-stream-processing-in-structured-streaming
https://databricks.com/blog/2018/03/13/introducing-stream-stream-joins-in-apache-spark-2-3.html
https://databricks.com/blog/2017/10/17/arbitrary-stateful-processing-in-apache-sparks-structured-streaming.html

Incidence
Response

Alerting

Reports

Data Pipeline with

STRUCTURED
STREAMING

Dump Complex
ETL

DELTA SQL, ML,
STREAMING

ETL @

Evolution of a Cutting-Edge Data Pipeline

Events

?
Reporting

Streaming
Analytics

Data Lake

Evolution of a Cutting-Edge Data Pipeline

Events

Reporting

Streaming
Analytics

Data Lake

Challenge #1: Historical Queries?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

Reporting

Events
λ-arch1

1

1

Challenge #2: Messy Data?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

Reporting

Events

Validation

λ-arch
Validation

1

21

1

2

Reprocessing

Challenge #3: Mistakes and Failures?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

Reporting

Events

Validation

λ-arch
Validation

Reprocessing

Partitioned

1

2

3

1

1

3

2

Reprocessing

Challenge #4: Query Performance?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

Reporting

Events

Validation

λ-arch
Validation

Reprocessing

Compaction

Partitioned

Compact
Small Files

Scheduled to
Avoid Compaction

1

2

3

1

1

2

4

4

4

2

Let’s try it instead with

DELTA

Let’s try it instead with

DELTA

The
LOW-LATENCY

of streaming

The
RELIABILITY &

PERFORMANCE
of data warehouse

The
SCALE

of data lake

THE GOOD
OF DATA LAKES
• Massive scale on cloud storage
• Open Formats (Parquet, ORC)
• Predictions (ML) & Streaming

THE GOOD
OF DATA WAREHOUSES
• Pristine Data
• Transactional Reliability
• Fast Queries

Databricks Delta Combines the Best
Decouple Compute & Storage

ACID Transactions & Data Validation

Data Indexing & Caching (10-100x)

Data stored as Parquet, ORC, etc.

Integrated with Structured Streaming

MASSIVE SCALE

RELIABILITY

PERFORMANCE

LOW-LATENCY

OPEN

The Canonical Data Pipeline

λ-arch
Validation

Reprocessing

Compaction

1

2

3

4

DELTA

DELTA

DELTA

DELTA

Streaming
Analytics

Reporting

Easy as data in short term and long term data in one location

Easy and seamless with Detla's transactional guarantees

Not needed, Delta handles both short and long term data

Accelerate Innovation with Databricks

Unified Analytics Platform

DATA
WAREHOUSES

CLOUD STORAGE HADOOP STORAGEIoT / STREAMING DATA

Higher Performance &
Reliability for your Data Lake

Explore Data Train Models Serve Models
DATABRICKS COLLABORATIVE NOTEBOOKSIncreases Data Science

Productivity by 5x

Databricks Enterprise Security

Open Extensible API’s

Removes Devops &
Infrastructure Complexity

DATABRICKS MANAGED SERVICE
Serverless

SLA’s

DATABRICKS DELTA
Performance

ReliabilityImproves Performance by
10-20X over Apache Spark

DATABRICKS RUNTIME

I/O Performance

Incidence
Response

Alerting

Reports

Data Pipelines with and DELTA

STRUCTURED
STREAMING

Dump Complex
ETL

DELTA SQL, ML,
STREAMING

fast, scalable, fault-tolerant
stream processing with high-

level, user-friendly APIs

data storage solution with the
reliability of data warehouses

and the scalability of data lakes

More Info
Structured Streaming Programming Guide

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

Databricks blog posts for more focused discussions on streaming
https://databricks.com/blog/category/engineering/streaming

Databricks Delta
https://databricks.com/product/databricks-delta

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/product/databricks-delta

Thank you!

5
1

@tathadas

