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About Me

Started Spark Streaming project in AMPLab, UC Berkeley

Currently focused on building Structured Streaming

PMC Member of 

Engineer on the StreamTeam @
"we make all your streams come true"
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Data Pipelines – 10000ft view

Data 
Warehouse

Dump ETL

structured data

Data Lake

unstructured 
data dump

unstructured 
data streams

Analytics



Messy data not ready 
for analytics

DATALAKE1

DW3

DW2

DW1
Incidence 
Response

Alerting

Reports

Data Pipeline @ Fortune 100 Company

Security Infra
IDS/IPS, DLP, antivirus, load 
balancers, proxy servers 

Cloud Infra & Apps
AWS, Azure, Google Cloud 

Servers Infra
Linux, Unix, Windows

Network Infra
Routers, switches, WAPs, 
databases, LDAP

Trillions of Records Separate warehouses for 
each type of analytics

Dump Complex ETL

Hours of delay in accessing data
Very expensive to scale

Proprietary formats
No advanced analytics (ML)

DATALAKE2



Incidence 
Response

Alerting

Reports

STRUCTURED 
STREAMING

Dump Complex 
ETL

DELTA SQL, ML, 
STREAMING

New Pipeline @ Fortune 100 Company

Data usable in minutes/seconds
Easy to scale
Open formats

Enables advanced analytics



STRUCTURED 
STREAMING



you 
should not have to 

reason about streaming



you 
should write simple queries

&

Spark 
should continuously update the answer



Treat Streams as Unbounded Tables

data stream unbounded input table

new data in the 
data stream

= 
new rows appended 
to a unbounded table



Anatomy of a Streaming Query

Example

Read JSON data from Kafka

Parse nested JSON 

Store in structured Parquet table

Get end-to-end failure guarantees

ETL



Anatomy of a Streaming Query
spark.readStream.format("kafka")

.option("kafka.boostrap.servers",...)

.option("subscribe", "topic")

.load()

Source 
Specify where to read data from

Built-in support for Files / Kafka / 
Kinesis*

Can include multiple sources of 
different types using join() / union()

*Available only on Databricks Runtime

returns a 
DataFrame

https://databricks.com/product/databricks-runtime


static data =
bounded table

streaming data =
unbounded table

Single 
API !

DataFrameó Table



DataFrame/Dataset
SQL

spark.sql("
SELECT type, sum(signal)
FROM devices
GROUP BY type

")

Most familiar to BI Analysts
Supports SQL-2003, HiveQL

val df: DataFrame = 
spark.table("device-data")

.groupBy("type")

.sum("signal"))

Great for Data Scientists familiar 
with Pandas, R Dataframes

DataFrame Dataset

val ds: Dataset[(String, Double)] =
spark.table("device-data")
.as[DeviceData]
.groupByKey(_.type)
.mapValues(_.signal)
.reduceGroups(_ + _)

Great for Data Engineers who 
want compile-time type safety

Choose your hammer for whatever nail you have!
Same semantics, same performance



Anatomy of a Streaming Query
spark.readStream.format("kafka")

.option("kafka.boostrap.servers",...)

.option("subscribe", "topic")

.load()

Kafka DataFrame
key value topic partition offset timestamp

[binary] [binary] "topic" 0 345 1486087873

[binary] [binary] "topic" 3 2890 1486086721



Anatomy of a Streaming Query
spark.readStream.format("kafka")

.option("kafka.boostrap.servers",...)

.option("subscribe", "topic")

.load()

.selectExpr("cast (value as string) as json")

.select(from_json("json", schema).as("data"))

Transformations

Cast bytes from Kafka records to a 
string, parse it as a json, and 
generate nested columns

100s of built-in, optimized SQL 
functions like from_json

user-defined functions, lambdas, 
function literals with map, flatMap…



Anatomy of a Streaming Query

Sink
Write transformed output to 
external storage systems

Built-in support for Files / Kafka

Use foreach to execute arbitrary 
code with the output data

Some sinks are transactional and 
exactly once (e.g. files)

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")



Anatomy of a Streaming Query

Processing Details

Trigger: when to process data 
- Fixed interval micro-batches
- As fast as possible micro-batches
- Continuously (new in Spark 2.3)

Checkpoint location: for tracking the 
progress of the query

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()



DataFrames,
Datasets, SQL

Logical 
Plan

Read from 
Kafka

Project
device, signal

Filter
signal > 15

Write to 
Parquet

Spark automatically streamifies!

Spark SQL converts batch-like query to a series of incremental 
execution plans operating on new batches of data

Kafka 
Source

Optimized 
Operator
codegen, off-

heap, etc.

Parquet
Sink

Optimized
Plan

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()

Series of Incremental
Execution Plans
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Fault-tolerance with Checkpointing

Checkpointing 

Saves processed offset info to stable storage
Saved as JSON for forward-compatibility

Allows recovery from any failure
Can resume after limited changes to your 
streaming transformations (e.g. adding new 
filters to drop corrupted data, etc.)

end-to-end 
exactly-once 
guarantees

write 
ahead 

log



Anatomy of a Streaming Query

ETL

Raw data from Kafka available 
as structured data in seconds, 
ready for querying

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()



3x
faster

Structured Streaming reuses 
the Spark SQL Optimizer 

and Tungsten Engine

Performance:                       Benchmark
40-core throughput

700K

22M

65M
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More details in our blog post

cheaper

https://databricks.com/blog/2017/10/11/benchmarking-structured-streaming-on-databricks-runtime-against-state-of-the-art-streaming-systems.html


Business Logic independent of Execution Mode

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()

Business logic 
remains unchanged



Business Logic independent of Execution Mode

.selectExpr("cast (value as string) as json")

.select(from_json("json", schema).as("data"))
Business logic 
remains unchanged

Peripheral code decides whether 
it’s a batch or a streaming query

spark.read.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()

.write

.format("parquet")

.option("path", "/parquetTable/")

.load()



Business Logic independent of Execution Mode
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))

Batch

high latency
(hours/minutes)

execute on-demand

high throughput

Micro-batch
Streaming

low latency
(seconds)

efficient resource allocation

high throughput

Continuous**
Streaming

ultra-low latency
(milliseconds)

static resource allocation

**experimental release in Spark 2.3, read our blog

https://databricks.com/blog/2018/03/20/low-latency-continuous-processing-mode-in-structured-streaming-in-apache-spark-2-3-0.html


Event time Aggregations

Windowing is just another type of grouping in Struct. Streaming

number of records every hour

Support UDAFs!

parsedData
.groupBy(window("timestamp","1 hour"))
.count()

parsedData
.groupBy(

"device", 
window("timestamp","10 mins"))

.avg("signal")

avg signal strength of each 
device every 10 mins



Stateful Processing for Aggregations

Aggregates has to be saved as 
distributed state between triggers

Each trigger reads previous state and 
writes updated state

State stored in memory, 
backed by write ahead log in HDFS

Fault-tolerant, exactly-once guarantee!
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state updates 
are written to 
log for checkpointing
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Automatically handles Late Data

12:00 - 13:00 1 12:00 - 13:00 3

13:00 - 14:00 1

12:00 - 13:00 3

13:00 - 14:00 2

14:00 - 15:00 5

12:00 - 13:00 5

13:00 - 14:00 2

14:00 - 15:00 5

15:00 - 16:00 4

12:00 - 13:00 3

13:00 - 14:00 2

14:00 - 15:00 6

15:00 - 16:00 4

16:00 - 17:00 3

13:00 14:00 15:00 16:00 17:00 Keeping state allows 
late data to update 
counts of old windows

red = state updated 
with late data

But size of the state increases indefinitely 
if old windows are not dropped



Watermarking 

Watermark - moving threshold of 
how late data is expected to be 
and when to drop old state

Trails behind max event time 
seen by the engine

Watermark delay = trailing gap

event time 

max event time

watermark data older 
than 

watermark 
not expected

12:30 PM

12:20 PM

trailing gap
of 10 mins



Watermarking

Data newer than watermark may 
be late, but allowed to aggregate

Data older than watermark is 
"too late" and dropped

Windows older than watermark 
automatically deleted to limit the 
amount of intermediate state

max event time

event time 

watermark

late data
allowed to 
aggregate

data too 
late, 

dropped

watermark 
delay
of 10 mins



Watermarking

max event time

event time 

watermark

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()

late data
allowed to 
aggregate

data too 
late, 

dropped

Useful only in stateful operations

Ignored in non-stateful streaming 
queries and batch queries

watermark 
delay
of 10 mins



Watermarking

data too late, 
ignored in counts, 
state dropped

Processing Time12:00

12:05

12:10

12:15

12:10 12:15 12:20

12:07

12:13

12:08
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e
12:15

12:18

12:04

watermark updated to 
12:14 - 10m = 12:04
for next trigger, 
state < 12:04 deleted

data is late, but 
considered in 
counts

system tracks max 
observed event time

12:08

wm = 12:04

10
 m

in

12:14

More details in my blog post

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html


Other Interesting Operations

Streaming Deduplication 

Joins
Stream-batch joins 
Stream-stream joins

Arbitrary Stateful Processing
[map|flatMap]GroupsWithState

stream1.join(stream2, "device")

parsedData.dropDuplicates("eventId")

See my previous Spark Summit talk and blog posts (here and here)

ds.groupByKey(_.id)
.mapGroupsWithState

(timeoutConf)
(mappingWithStateFunc)

https://databricks.com/session/deep-dive-into-stateful-stream-processing-in-structured-streaming
https://databricks.com/blog/2018/03/13/introducing-stream-stream-joins-in-apache-spark-2-3.html
https://databricks.com/blog/2017/10/17/arbitrary-stateful-processing-in-apache-sparks-structured-streaming.html
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Data Pipeline with 

STRUCTURED 
STREAMING

Dump Complex 
ETL

DELTA SQL, ML, 
STREAMING



ETL @



Evolution of a Cutting-Edge Data Pipeline

Events

?
Reporting

Streaming
Analytics

Data Lake



Evolution of a Cutting-Edge Data Pipeline

Events

Reporting

Streaming
Analytics

Data Lake



Challenge #1: Historical Queries?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

Reporting

Events
λ-arch1

1

1



Challenge #2: Messy Data?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

Reporting

Events

Validation

λ-arch
Validation

1

21

1

2



Reprocessing

Challenge #3: Mistakes and Failures?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

Reporting

Events

Validation

λ-arch
Validation

Reprocessing

Partitioned

1

2

3

1

1

3

2



Reprocessing

Challenge #4: Query Performance?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

Reporting

Events

Validation

λ-arch
Validation

Reprocessing

Compaction

Partitioned

Compact
Small Files

Scheduled to 
Avoid Compaction

1

2

3

1

1

2

4

4

4

2



Let’s try it instead with

DELTA



Let’s try it instead with

DELTA

The
LOW-LATENCY

of streaming

The
RELIABILITY &

PERFORMANCE
of data warehouse

The
SCALE

of data lake



THE GOOD 
OF DATA LAKES
• Massive scale on cloud storage
• Open Formats (Parquet, ORC)
• Predictions (ML) & Streaming

THE GOOD 
OF DATA WAREHOUSES
• Pristine Data
• Transactional Reliability
• Fast Queries



Databricks Delta Combines the Best
Decouple Compute & Storage

ACID Transactions & Data Validation

Data Indexing & Caching (10-100x)

Data stored as Parquet, ORC, etc. 

Integrated with Structured Streaming

MASSIVE SCALE

RELIABILITY

PERFORMANCE

LOW-LATENCY

OPEN



The Canonical Data Pipeline

λ-arch
Validation

Reprocessing

Compaction

1

2

3

4

DELTA

DELTA

DELTA

DELTA

Streaming
Analytics

Reporting

Easy as data in short term and long term data in one location

Easy and seamless with Detla's transactional guarantees

Not needed, Delta handles both short and long term data



Accelerate Innovation with Databricks    

Unified Analytics Platform

DATA 
WAREHOUSES

CLOUD STORAGE HADOOP STORAGEIoT / STREAMING DATA

Higher Performance & 
Reliability for your Data Lake

Explore Data       Train Models       Serve Models
DATABRICKS COLLABORATIVE NOTEBOOKSIncreases Data Science 

Productivity by 5x

Databricks Enterprise Security 

Open Extensible API’s

Removes Devops & 
Infrastructure Complexity

DATABRICKS MANAGED SERVICE
Serverless

SLA’s

DATABRICKS DELTA
Performance

ReliabilityImproves Performance by 
10-20X over Apache Spark

DATABRICKS RUNTIME

I/O Performance



Incidence 
Response

Alerting

Reports

Data Pipelines with                and DELTA

STRUCTURED 
STREAMING

Dump Complex 
ETL

DELTA SQL, ML, 
STREAMING

fast, scalable, fault-tolerant 
stream processing with high-

level, user-friendly APIs 

data storage solution with the 
reliability of data warehouses 

and the scalability of data lakes



More Info
Structured Streaming Programming Guide

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

Databricks blog posts for more focused discussions on streaming
https://databricks.com/blog/category/engineering/streaming

Databricks Delta
https://databricks.com/product/databricks-delta

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/product/databricks-delta




Thank you!
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