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A “simple” query

Data

● 2010 U.S. census
● 100 million records
● 1KB per record
● 100 GB total

System

● 4x SATA 3 disks
● Total read throughput 1 GB/s

Query

Goal

● Compute the answer to the query in 
under 5 seconds

SELECT SUM(householdSize)
FROM CensusHouseholds;



Solutions
Sequential scan Query takes 100 s (100 GB at 1 GB/s)

Parallelize Spread the data over 40 disks in 10 machines
Query takes 10 s

Cache Keep the data in memory
2nd query: 10 ms
3rd query: 10 s

Materialize Summarize the data on disk
All queries: 100 ms

Materialize + 
cache + adapt

As above, building summaries on demand



Lazy > Smart + Fast

(Lazy + adaptive is even better)



Overview 

How do you tune a data system? How can (or should) a data system tune itself?

What problems have we solved to bring these things to Apache Calcite?

Part 1: Strategies for organizing data

Part 2: How to make systems self-organizing?



SELECT d.name, COUNT(*) AS c
FROM Emps AS e
JOIN Depts AS d USING (deptno)
WHERE e.age < 40
GROUP BY d.deptno
HAVING COUNT(*) > 5
ORDER BY c DESC

Relational algebra

Based on set theory, plus operators: 
Project, Filter, Aggregate, Union, Join, 
Sort

Requires: declarative language (SQL), 
query planner

Original goal: data independence

Enables: query optimization, new 
algorithms and data structures

Scan [Emps] Scan [Depts]

Join [e.deptno = d.deptno]

Filter [e.age < 30]

Aggregate [deptno, COUNT(*) AS c]

Filter [c > 5]

Project [name, c]

Sort [c DESC]



Apache Calcite

Apache top-level project

Query planning framework used in many 
projects and products

Also works standalone: embedded federated 
query engine with SQL / JDBC front end

Apache community development model

http://calcite.apache.org 
http://github.com/apache/calcite 

http://calcite.apache.org
http://github.com/apache/calcite


1. Organizing data



Ways of organizing data

Format (CSV, JSON, binary)

Layout: row- vs. column-oriented (e.g. Parquet, ORC), cache friendly (e.g. Arrow)

Storage medium (disk, flash, RAM, NVRAM, ...)

Non-lossy copy: sorted / partitioned

Lossy copies of data: project, filter, aggregate, join

Combinations of the above

Logical optimizations >> physical optimizations



Index

A sorted, projected materialized 
view

Accelerates queries that use 
ranges, correlated lookups, sorting, 
aggregate, distinct

CREATE TABLE Emp (empno INT,
 name VARCHAR(20), deptno INT);

CREATE INDEX I_Emp_Deptno
ON Emp (deptno, name);

SELECT DISTINCT deptno FROM Emp
WHERE deptno BETWEEN 20 AND 40
ORDER BY deptno;

empno name deptno

100 Fred 20

110 Barney 10

120 Wilma 30

130 Dino 10

deptno name rowid

10 Barney af5634.0001

10 Dino af5634.0003

20 Fred af5634.0000

30 Wilma af5634.0002



Add the remaining columns

No longer need “rowid”

Lossless

During planning, treat indexes 
as tables, and index lookups 
as joins 

Covering index

empno name deptno

100 Fred 20

110 Barney 10

120 Wilma 30

130 Dino 10

deptno name empno

10 Barney 100

10 Dino 130

20 Fred 20

30 Wilma 30

CREATE INDEX I_Emp_Deptno2 (
  deptno INTEGER,
  name VARCHAR(20))
COVER (empno);



Materialized view
CREATE MATERIALIZED
  VIEW EmpsByDeptno AS
SELECT deptno, name, deptno
FROM Emp
ORDER BY deptno, name;

Scan [Emps]

Scan [EmpsByDeptno]

Sort [deptno, name]

empno name deptno

100 Fred 20

110 Barney 10

120 Wilma 30

130 Dino 10

deptno name empno

10 Barney 100

10 Dino 130

20 Fred 20

30 Wilma 30

As a materialized view, an 
index is now just another 
table

Several tables contain the 
information necessary to 
answer the query - just pick 
the best



Spatial query

Find all restaurants within 1.5 distance units of 
where I am:

restaurant x y

Zachary’s pizza 3 1

King Yen 7 7

Filippo’s 7 4

Station burger 5 6

SELECT *
FROM Restaurants AS r
WHERE ST_Distance(
  ST_MakePoint(r.x, r.y),
  ST_MakePoint(6, 7)) < 1.5

•

•

•

•
Zachary’s 
pizza

Filippo’s

King 
Yen

Station 
burger



Hilbert space-filling curve

● A space-filling curve invented by mathematician David Hilbert
● Every (x, y) point has a unique position on the curve
● Points near to each other typically have Hilbert indexes close together 



•
•

•

•

Add restriction based on h, a restaurant’s distance 
along the Hilbert curve

Must keep original restriction due to false positives

Using Hilbert index

restaurant x y h

Zachary’s pizza 3 1 5

King Yen 7 7 41

Filippo’s 7 4 52

Station burger 5 6 36

Zachary’s 
pizza

Filippo’s

SELECT *
FROM Restaurants AS r
WHERE (r.h BETWEEN 35 AND 42
    OR r.h BETWEEN 46 AND 46)
AND ST_Distance(
  ST_MakePoint(r.x, r.y),
  ST_MakePoint(6, 7)) < 1.5

King 
Yen

Station 
burger



Telling the optimizer

1. Declare h as a generated column
2. Sort table by h

Planner can now convert spatial range 
queries into a range scan

Does not require specialized spatial 
index such as r-tree

Very efficient on a sorted table such as 
HBase

CREATE TABLE Restaurants (
  restaurant VARCHAR(20),
  x DOUBLE,
  y DOUBLE,
  h DOUBLE GENERATED ALWAYS AS
     ST_Hilbert(x, y) STORED)
SORT KEY (h);

restaurant x y h

Zachary’s pizza 3 1 5

Station burger 5 6 36

King Yen 7 7 41

Filippo’s 7 4 52



Much valuable data is “data in flight”

Use SQL to query streams (or streams + tables)

Streaming

Data center

SELECT AVG(unitPrice)
FROM Orders
WHERE units > 1000
AND orderDate
  BETWEEN ‘2014-06-01’
  AND ‘2015-12-31’

SELECT STREAM *
FROM Orders
WHERE units > 1000

Streaming query

Historic query



Hybrid query combines a stream with its 
own history

● Orders is used as both as stream 
and as “stream history” virtual table

● “Average order size over last year” 
should be maintained by the system, 
i.e. a materialized view

SELECT STREAM *
FROM Orders AS o
WHERE units > (
  SELECT AVG(units)
  FROM Orders AS h
  WHERE h.productId = o.productId
  AND h.rowtime
    > o.rowtime - INTERVAL ‘1’ YEAR)

“Orders” used 
as a stream

“Orders” used as 
a “stream history” 
virtual table



Summary - data optimization via 
materialized views

Many forms of data optimization can be modeled as materialized views:

● Blocks in cache
● B-tree indexes
● Summary tables
● Spatial indexes
● History of streams

Allows the optimizer to “understand” the optimization and use it (if beneficial)

But who designs the optimizations?



2. Learning



How do data systems learn?

queries

DML

statistics adaptations

recommender

Goals ● Improve response time, throughput, storage cost
● Predictable, adaptive (short and long term), allow human 

intervention

How? ● Humans
● Adaptive systems
● Smart algorithms

Example 
adaptations

● Cache disk blocks in memory
● Cached query results
● Data organization, e.g. partition on a different key
● Secondary structures, e.g. b-tree and r-tree indexes



Tiled, in-memory materialized views

A vision for an adaptive data system (we’re not there yet)
tables on 

disk

in-memory 
materializations

SELECT x, SUM(n) FROM t GROUP BY x



Building materialized views

Challenges:

● Design  Which materializations to create?
● Populate  Load them with data
● Maintain  Incrementally populate when data changes
● Rewrite  Transparently rewrite queries to use materializations
● Adapt  Design and populate new materializations, drop unused ones
● Express  Need a rich algebra, to model how data is derived

Initial focus: summary tables (materialized views over star schemas)



CREATE LATTICE Sales AS
SELECT t.*, c.*, COUNT(*), SUM(s.units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c USING (customerId)
JOIN Products AS p USING (productId);

Designing summary tables via lattices

CREATE MATERIALIZED VIEW SalesYearZipcode AS
SELECT t.year, c.state, c.zipcode,
  COUNT(*), SUM(units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c USING (customerId)
GROUP BY 1, 2, 3;

product

product 
class

sales

customers

time



Many possible
summary
tables

Key

z zipcode (43k)
s state (50)
g gender (2)
y year (5)
m month (12)

() 1

(z, s, g, y, 
m) 912k

(s, g, y, 
m) 6k

(z) 43k (s) 50 (g) 2 (y) 5 (m) 12

raw 1m

(y, m) 
60(g, y) 10(z, s) 

43.4k

(g, y, m) 
120

Fewer than you would 
expect, because 5m 

combinations cannot 
occur in 1m row table

Fewer than you 
would expect, 
because state 

depends on zipcode



Algorithm: Design summary tables

Given a database with 30 columns, 10M rows. Find X summary tables with under 
Y rows that improve query response time the most.

AdaptiveMonteCarlo algorithm [1]:

● Based on research [2]
● Greedy algorithm that takes a combination of summary tables and tries to 

find the table that yields the greatest cost/benefit improvement
● Models “benefit” of the table as query time saved over simulated query load
● The “cost” of a table is its size

[1] org.pentaho.aggdes.algorithm.impl.AdaptiveMonteCarloAlgorithm
[2] Harinarayan, Rajaraman, Ullman (1996). “Implementing data cubes efficiently”



Lattice (optimized) () 1

(z, s, g, y, 
m) 912k

(s, g, y, 
m) 6k

(z) 43k (s) 50 (g) 2 (y) 5 (m) 12

(z, g, y, 
m) 909k

(z, s, y, 
m) 831k

raw 1m

(z, s, g, 
m) 644k

(z, s, g, 
y) 392k

(y, m) 
60

(z, s) 
43.4k

(z, s, g) 
83.6k

(g, y) 10

(g, y, m) 
120

(g, m) 
24

Key

z zipcode (43k)
s state (50)
g gender (2)
y year (5)
m month (12)



Data profiling

Algorithm needs count(distinct a, b, ...) for each combination of attributes:

● Previous example had 25 = 32 possible tables
● Schema with 30 attributes has 230 (about 109) possible tables
● Algorithm considers a significant fraction of these
● Approximations are OK

Attempts to solve the profiling problem:

1. Compute each combination: scan, sort, unique, count; repeat 230 times!
2. Sketches (HyperLogLog)
3. Sketches + parallelism + information theory [CALCITE-1616]



Sketches

HyperLogLog is an algorithm that computes 
approximate distinct count. It can estimate 
cardinalities of 109 with a typical error rate of 
2%, using 1.5 kB of memory. [3][4]

With 16 MB memory per machine we can 
compute 10,000 combinations of attributes 
each pass.

So, we’re down from 109 to 105 passes. 

[3] Flajolet, Fusy, Gandouet, Meunier (2007). "Hyperloglog: The analysis of a near-optimal cardinality estimation algorithm"
[4] https://github.com/mrjgreen/HyperLogLog 



Given Expected cardinality Actual cardinality  Surprise

(gender): 2   (state): 50 (gender, state): 100.0 100 0.000

(month): 12 (zipcode): 43,000 (month, zipcode): 441,699.3 442,700 0.001

(state): 50   (zipcode): 43,000 (state, zipcode): 799,666.7 43,400 0.897

(state, zipcode): 43,400
(gender, state): 100
(gender, zipcode): 85,995

(gender, state, zipcode): 86,799 
= min(86,799, 892,234, 892,228)

83,567 0.019

● Surprise = abs(actual - expected) / (actual + expected)
● E(card (x, y)) = n . (1 - ((n - 1) / n) ^ p)    n = card (x) * card (y), p = row count

Combining probability & information theory



Algorithm

Three ways “surprise” can help:

● If a cardinality is not 
surprising, we don’t need to 
store it -- we can derive it

● If a combination’s cardinality 
is not surprising, it is unlikely 
to have surprising children

● If we’re not seeing surprising 
results, it’s time to stop

surprise_threshold := 1
queue := {singleton combinations} // (a), (b), ...
while queue is not empty {
  batch := remove first 10,000 entries in queue
  compute cardinality of each combination in batch
  for each actual (computed) cardinality a {
    e := expected cardinality of combination
    s := surprise(a, e)
    if s > surprise_threshold {
      store combination and its cardinality
      add child combinations to queue // (x, a), (x, b), ...
    }
    increase surprise_threshold 
  }
}



Algorithm progress and “surprise” threshold

Progress of algorithm

Rejected as not 
sufficiently 
surprising

Surprise 
threshold rises 

as algorithm 
progresses

Singleton 
combinations 

are have surprise 
= 1

Surprise 
threshold rises 
after we have 
completed the 

first batch



Data profiling - summary

The algorithm defeats a combinatorial search space using sketches + 
information theory + parallelism 

Recommending data structures is an optimization problem; profiling provides 
the cost & benefit function

As a by-product, the algorithm discovers unique keys, “almost” keys, and foreign 
keys

But which tables are actually joined together in practice?



CREATE LATTICE Sales AS
SELECT t.*, c.*, COUNT(*), SUM(s.units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c USING (customerId)
JOIN Products AS p USING (productId);

CREATE MATERIALIZED VIEW SalesYearZipcode AS
SELECT t.year, c.state, c.zipcode,
  COUNT(*), SUM(units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c USING (customerId)
GROUP BY 1, 2, 3;

product

product 
class

sales

customers

time

The lattice generates the 
summary tables. But who 
writes the lattice?

Designing summary tables via lattices (2)



CREATE LATTICE Sales AS
SELECT t.*, c.*, COUNT(*), SUM(s.units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c USING (customerId)
JOIN Products AS p USING (productId);

CREATE MATERIALIZED VIEW SalesYearZipcode AS
SELECT t.year, c.state, c.zipcode,
  COUNT(*), SUM(units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c USING (customerId)
GROUP BY 1, 2, 3;

ALTER SCHEMA Sales
INFER LATTICES;

product

product 
class

sales

customers

time

Designing summary tables via lattices (3)



Lattice after Query 1 + 2

Query 2

Query 1

Growing and evolving 
lattices based on queries

sales

customers

product

product 
class

sales

product

product 
class

sales

customers

See: [CALCITE-1870] “Lattice suggester”



Summary

Learning systems = manual tuning + adaptive + smart algorithms

Query history + data profiling→ lattices → summary tables

We have discussed summary tables (materialized views based on 
join/aggregate in a star schema) but the approach can be applied to other kinds 
of materialized views

Relational algebra, incorporating materialized views, is a powerful language that 
allows us to combine many forms of data optimization



Thank you!  Questions?
@julianhyde | @ApacheCalcite | http://apache.calcite.org

Resources
[CALCITE-1616] Data profiler
[CALCITE-1870] Lattice suggester
[CALCITE-1861] Spatial indexes
[CALCITE-1968] OpenGIS
[CALCITE-1991] Generated columns
Talk: “Data profiling with Apache Calcite” (Hadoop Summit, 2017)
Talk: “SQL on everything, in memory” (Strata, 2014)
Zhang, Qi, Stradling, Huang (2014). “Towards a Painless Index for Spatial Objects”
Harinarayan, Rajaraman, Ullman (1996). “Implementing data cubes efficiently”

Image credit
https://www.flickr.com/photos/defenceimages/6938469933/





Extra slides



Architecture

Conventional database Calcite



Planning queries

MySQL

Splunk

join

Key: productId

group

Key: productName
Agg: count

filter

Condition:
action = 'purchase'

sort

Key: c desc

scan

scan

Table: products

select p.productName, count(*) as c
from splunk.splunk as s
    join mysql.products as p
    on s.productId = p.productId
where s.action = 'purchase'
group by p.productName
order by c desc

Table: splunk



Optimized query

MySQL

Splunk

join

Key: productId

group

Key: productName
Agg: count

filter

Condition:
action = 'purchase'

sort

Key: c desc

scan

scan

Table: splunk

Table: products

select p.productName, count(*) as c
from splunk.splunk as s
    join mysql.products as p
    on s.productId = p.productId
where s.action = 'purchase'
group by p.productName
order by c desc



Calcite framework

Cost, statistics
RelOptCost
RelOptCostFactory
RelMetadataProvider
• RelMdColumnUniquensss
• RelMdDistinctRowCount
• RelMdSelectivity

SQL parser
SqlNode
SqlParser
SqlValidator

Transformation rules
RelOptRule
• FilterMergeRule
• AggregateUnionTransposeRule 
• 100+ more 
Global transformations
• Unification (materialized view)
• Column trimming
• De-correlation

Relational algebra
RelNode (operator)
• TableScan
• Filter
• Project
• Union
• Aggregate
• …
RelDataType (type)
RexNode (expression)
RelTrait (physical property)
• RelConvention (calling-convention)
• RelCollation (sortedness)
• RelDistribution (partitioning)
RelBuilder

JDBC driver

Metadata
Schema
Table
Function
• TableFunction
• TableMacro
Lattice



Materialized views, lattices, tiles

Materialized view - A table whose contents are 
guaranteed to be the same as executing a given query.

Lattice - Recommends, builds, and recognizes summary 
materialized views (tiles) based on a star schema.

A query defines the tables and many:1 relationships in 
the star schema.

Tile - A summary materialized view that belongs to a 
lattice. A tile may or may not be materialized. Might be:

● Declared in lattice, or
● Generated via recommender algorithm, or
● Created in response to query.

CREATE MATERIALIZED VIEW t AS 
SELECT * FROM emps
WHERE deptno = 10;

CREATE LATTICE star AS
SELECT *
FROM sales_fact_1997 AS s
JOIN product AS p ON …
JOIN product_class AS pc ON …
JOIN customer AS c ON …
JOIN time_by_day AS t ON …;

CREATE MATERIALIZED VIEW zg IN star
SELECT gender, zipcode,  COUNT(*),
 SUM(unit_sales) FROM star
GROUP BY gender, zipcode;



Combining past and future

select stream *
from Orders as o
where units > (
  select avg(units)
  from Orders as h
  where h.productId = o.productId
  and h.rowtime > o.rowtime - interval ‘1’ year)

➢ Orders is used as both stream and table
➢ System determines where to find the records
➢ Query is invalid if records are not available



Controlling when data is emitted

Early emission is the defining 
characteristic of a streaming query.

The emit clause is a SQL extension 
inspired by Apache Beam’s “trigger” 
notion. (Still experimental… and 
evolving.)

A relational (non-streaming) query is 
just a query with the most conservative 
possible emission strategy.

select stream productId,
  count(*) as c
from Orders
group by productId,
  floor(rowtime to hour)
emit at watermark,
  early interval ‘2’ minute,
  late limit 1;

select *
from Orders
emit when complete;



Other applications of data profiling

Query optimization:

● Planners are poor at estimating selectivity of conditions after N-way join 
(especially on real data)

● New join-order benchmark: “Movies made by French directors tend to have 
French actors”

● Predict number of reducers in MapReduce & Spark

“Grokking” a data set

Identifying problems in normalization, partitioning, quality

Applications in machine learning?



Further improvements to data profiling

● Build sketches in parallel
● Run algorithm in a distributed framework (Spark or MapReduce)
● Compute histograms

○ For example, Median age for male/female customers

● Seek out functional dependencies
○ Once you know FDs, a lot of cardinalities are no longer “surprising”
○ FDs occur in denormalized tables, e.g. star schemas

● Smarter criteria for stopping algorithm
● Skew/heavy hitters. Are some values much more frequent than others?
● Conditional cardinalities and functional dependencies

○ Does one partition of the data behave differently from others? (e.g. year=2005, state=LA)


