
FROM FLAT FILES TO DECONSTRUCTED
DATABASE
The evolution and future of the Big Data ecosystem.

Julien Le Dem
@J_
julien.ledem@wework.com
April 2018

Julien Le Dem
@J_

Julien

Principal Data Engineer

• Author of Parquet
• Apache member
• Apache PMCs: Arrow, Kudu, Heron, Incubator, Pig, Parquet, Tez
• Used Hadoop first at Yahoo in 2007
• Formerly Twitter Data platform and Dremio

Agenda

❖ At the beginning there was Hadoop (2005)

❖ Actually, SQL was invented in the 70s

“MapReduce: A major step backwards”
❖ The deconstructed database

❖ What next?

At the beginning there was Hadoop

Hadoop

Storage:
A distributed file system

Execution:
Map Reduce

Based on Google’s GFS and MapReduce papers

Great at looking for a needle in a haystack

… with snowplows

Great at looking for a needle in a haystack …

Original Hadoop abstractions

Execution
Map/Reduce

Storage
File System

Just flat files

● Any binary
● No schema
● No standard
● The job must know how to

split the data

M

M

M

R

R

R

Shuffle

Read
locally

write
locally

Simple

● Flexible/Composable
● Logic and optimizations

tightly coupled
● Ties execution with

persistence

“MapReduce: A major step backwards”
(2008)

SQL

Databases have been around for a long time

• Originally SEQUEL developed in the early 70s at IBM

• 1986: first SQL standard

• Updated in 1989, 1992, 1996, 1999, 2003, 2006, 2008, 2011, 2016

Relational model

Global Standard • Universal Data access language

• Widely understood

• First described in 1969 by Edgar F. Codd

Underlying principles of relational databases

Standard
SQL is understood by many

Separation of logic and optimization
Separation of Schema and Application

High level language focusing on logic (SQL)

Indexing

Optimizer

Evolution
Views

Schemas

Integrity
Transactions

Integrity constraints

Referential integrity

Storage
Tables

Abstracted notion of data

● Defines a Schema
● Format/layout decoupled

from queries
● Has statistics/indexing
● Can evolve over time

Execution
SQL

SQL

● Decouples logic of query
from:
○ Optimizations
○ Data representation
○ Indexing

Relational Database abstractions

SELECT a, AVG(b)
FROM FOO GROUP BY a

FOO

Query evaluation

Syntax Semantic Optimization Execution

A well integrated system
Storage

SELECT f.c, AVG(b.d)
 FROM FOO f
 JOIN BAR b ON f.a = b.b
 GROUP BY f.c WHERE f.d = x

Select

Scan
FOO

Scan
BAR

JOIN GROUP
BYFILTER

Select

Scan
FOO

Scan
BAR

JOIN

GROUP
BY

FILTER

Syntax Semantic

Optimization

Execution

Table
Metadata
(Schema,

stats,
layout,…)

Columnar
data

Push
downs

Columnar
data

Columnar
data

Push
downs

Push
downs

user

So why? Why Hadoop?
Why Snowplows?

The relational model was constrained

We need the right
Constraints

Need the right abstractions

Traditional SQL implementations:

• Flat schema

• Inflexible schema evolution

• History rewrite required

• No lower level abstractions

• Not scalable

Constraints are good

They allow optimizations

• Statistics

• Pick the best join algorithm

• Change the data layout

• Reusable optimization logic

It’s just code

Hadoop is flexible and scalable

• Room to scale algorithms that are not part of the standard
• Machine learning
• Your imagination is the limit

No Data shape constraint

Open source
• You can improve it
• You can expand it
• You can reinvent it

• Nested data structures
• Unstructured text with semantic annotations
• Graphs
• Non-uniform schemas

You can actually implement SQL with this

SELECT f.c, AVG(b.d)
 FROM FOO f
 JOIN BAR b ON f.a = b.b
 GROUP BY f.c WHERE f.d = x

Select

Scan
FOO

Scan
BAR

JOIN

GROUP
BY

FILTER

Parser

FOO

Execution

GROUP BY

JOIN

FILTER

BAR

And they did…

(open-sourced 2009)

10 years later

The deconstructed database

Author: gamene https://www.flickr.com/photos/gamene/4007091102

https://www.flickr.com/photos/gamene/

The deconstructed database

The deconstructed database

Query
model

Machine
learning

Storage

Batch
execution

Data
Exchange

Stream
Processing

We can mix and match individual components

*not exhaustive!

Specialized
Components

Stream processing

Storage

Execution SQL

Stream persistance

Streams

Resource management

Machine learning

We can mix and match individual components

Storage
Row oriented or columnar

Immutable or mutable
Stream storage vs analytics optimized

Query model
SQL

Functional
…

Machine Learning
Training models

Data Exchange
Row oriented

Columnar

Batch Execution
Optimized for high throughput and

historical analysis

Streaming Execution
Optimized for High Throughput and Low

latency processing

Emergence of standard components

Emergence of standard components

Columnar Storage
Apache Parquet as columnar

representation at rest.

SQL parsing and
optimization

Apache Calcite as a versatile query
optimizer framework

Schema model
Apache Avro as pipeline friendly schema

for the analytics world.

Columnar Exchange
Apache Arrow as the next generation in-

memory representation and no-overhead
data exchange

Table abstraction
Netflix’s Iceberg has a great potential to
provide Snapshot isolation and layout
abstraction on top of distributed file

systems.

The deconstructed database’s optimizer: Calcite
Storage

Execution engine

Schema
plugins

Optimizer
rules

SELECT f.c, AVG(b.d)
 FROM FOO f
 JOIN BAR b ON f.a = b.b
 GROUP BY f.c WHERE f.d = x

Select

Scan
FOO

Scan
BAR

JOIN GROUP
BYFILTER

Syntax Semantic

Optimization

Execution

…

Select

Scan
FOO

Scan
BAR

JOIN

GROUP
BY

FILTER

Apache Calcite is used in:

Streaming SQL

• Apache Apex

• Apache Flink

• Apache SamzaSQL

• Apache StormSQL

…

Batch SQL

• Apache Hive

• Apache Drill

• Apache Phoenix

• Apache Kilin

…

Columnar Row oriented

Mutable

The deconstructed database’s storage

Optimized for analytics Optimized for serving

Immutable

Query integration
To be performant a query engine requires deep integration with the storage layer.

Implementing push down and a vectorized reader producing data in an efficient

representation (for example Apache Arrow).

Storage: Push downs

PROJECTION
Read only what you need

PREDICATE
Filter

AGGREGATION
Avoid materializing intermediary data

To reduce IO, aggregation can

also be implemented during the

scan to:

• minimize materialization of

intermediary data

Evaluate filters during scan to:

• Leverage storage properties

(min/max stats, partitioning,

sort, etc)

• Avoid decoding skipped data.

• Reduce IO.

Read only the columns that are

needed:

• Columnar storage makes this

efficient.

The deconstructed database interchange: Apache Arrow

Scanner

Scanner

Scanner

Parquet files

projection push down
read only a and b

Partial
Agg

Partial
Agg

Partial
Agg Agg

Agg

Agg

Shuffle
Arrow batches

Result

SELECT SUM(a)
 FROM t
 WHERE c = 5
 GROUP BY b

Projection and
predicate push

downs

Incubent Interesting

Storage: Stream persistence

Open source projects

Features

• State of consumer: how do we recover from failure
• Snapshot
• Decoupling reads from writes
• Parallel reads
• Replication
• Data isolation

Big Data infrastructure blueprint

Big Data infrastructure blueprint

Big Data infrastructure blueprint

Data Infra

Stream persistance Stream processing

Batch processing

Real time
dashboards

Interactive
analysis

Periodic
dashboards

Analyst

Real time
publishing

Batch
publishing

Data API

Data API

Schema
registry

Datasets
metadata

Scheduling/
Job deps

Persistence
Legend:

Processing

Metadata

Monitoring /
Observability

Data Storage
(S3, GCS, HDFS)

(Parquet, Avro)

Data API

UI

Eng

The Future

Still Improving

Better interoperability

• More efficient interoperability:

Continued Apache Arrow adoption

A better data
abstraction

• A better metadata repository

• A better table abstraction:

Netflix/Iceberg

• Common Push down

implementations (filter,

projection, aggregation)

Better data governance

• Global Data Lineage

• Access control

• Protect privacy

• Record User consent

Some predictions

A common access layer

Distributed access
service

Centralizes:

• Schema evolution

• Access control/anonymization

• Efficient push downs

• Efficient interoperability

Table abstraction layer
(Schema, push downs, access control, anonymization)

SQL (Impala, Drill, Presto, Hive, …) Batch (Spark, MR, Beam) ML (TensorFlow, …)

File System (HDFS, S3, GCS) Other storage (HBase, Cassandra, Kudu, …)

A multi tiered streaming batch storage system

Batch-Stream storage
integration

Convergence of Kafka and Kudu

• Schema evolution

• Access control/anonymization

• Efficient push downs

• Efficient interoperability

Time based
Ingestion

API

1) In memory
row oriented

store

2) in memory
column
oriented

store

3) On Disk Column oriented
store

Stream consumer API
Projection, Predicate, Aggregation push downs

Batch consumer API
Projection, Predicate, Aggregation push downs

Mainly reads from here

Mainly reads from here

Questions?

Julien Le Dem @J_ julien.ledem@wework.com
April 2018

THANK YOU!
julien.ledem@wework.com

Julien Le Dem @J_
April 2018

