Deploying Interactive Machine Learning Applications with Clipper

Joseph E. Gonzalez Co-director of the RISE Lab jegonzal@cs.berkeley.edu

Managing the Machine Learning Lifecycle

Joseph E. Gonzalez Co-director of the RISE Lab jegonzal@cs.berkeley.edu

About Me

- Co-director of the RISE Lab
- > Co-founder of Turi Inc.
- Member of the Apache Spark PMC

Research

- Artificial Intelligence
- Data Science
- Distributed Data Systems
- Graph Processing Systems

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

Conjecture

Machine learning models are the next "big data"

Evidence

- 1. Everyone is talking about models but few have them.
- 2. They have the opportunity to transform industries.
- 3. They are a consequence of mastering big data.
- 4. Today, their full value is only realized with advanced skills and technologies

Conjecture

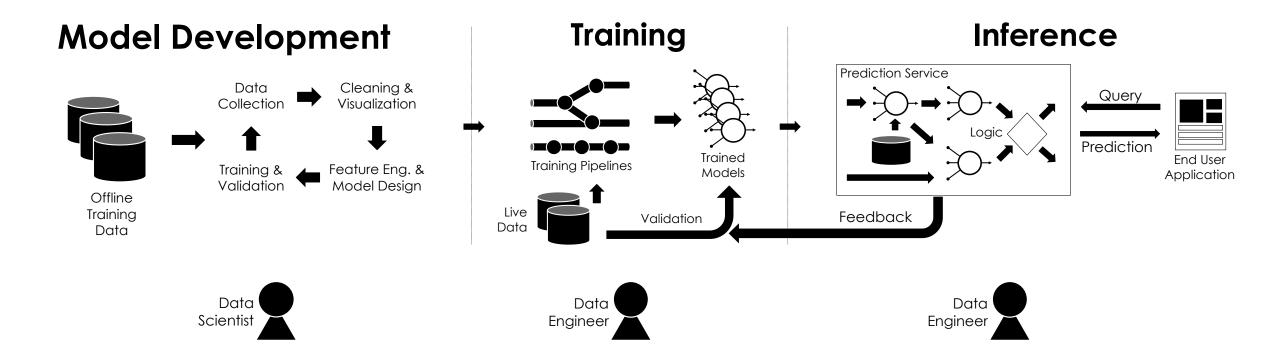
Machine learning models are the next "big data"

Corollaries

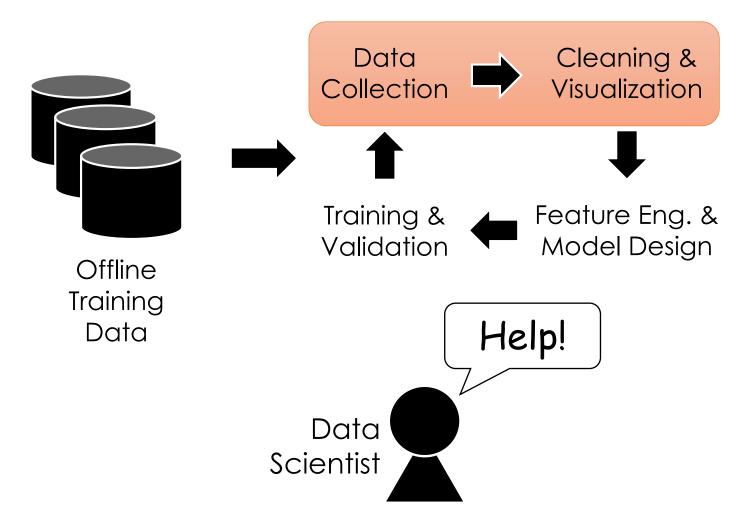
Data Engineers will need to manage data & machine learning models

We need new technologies to manage the **machine learning lifecycle**

What is the **Machine Learning Lifecycle**?



Model Development



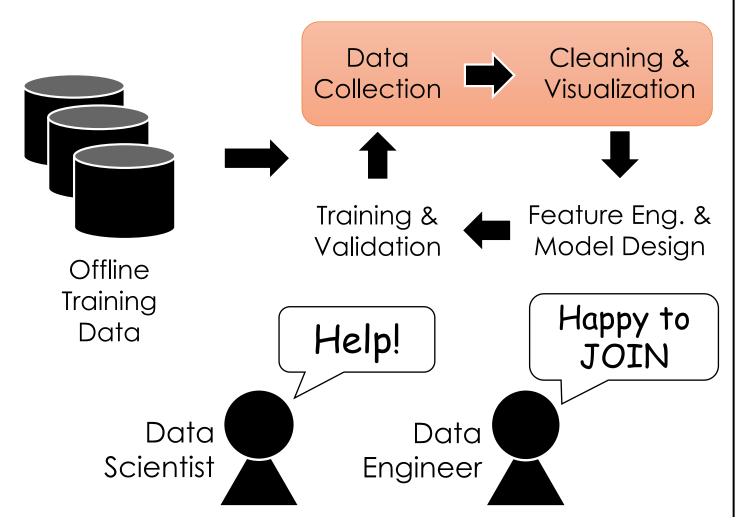
Identifying potential sources of data

Joining data from multiple sources

Addressing **missing** values and outliers

Plotting trends to identify **anomalies**

Model Development



Identifying potential sources of data

Joining data from multiple sources

Addressing **missing** values and outliers

Plotting trends to identify **anomalies**

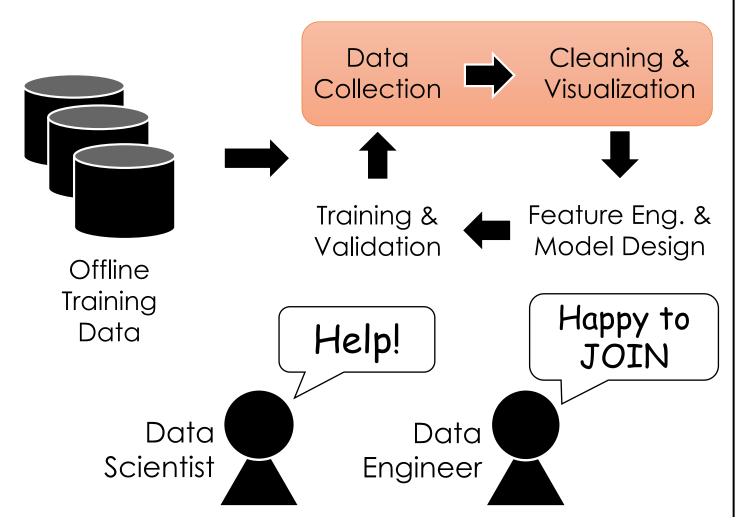
In Data Science, 80% of time spent prepare data, 20% of time spent complain about need for prepare data.

6:47 PM - 26 Feb 2013

533 Retweets 330 Likes



Model Development



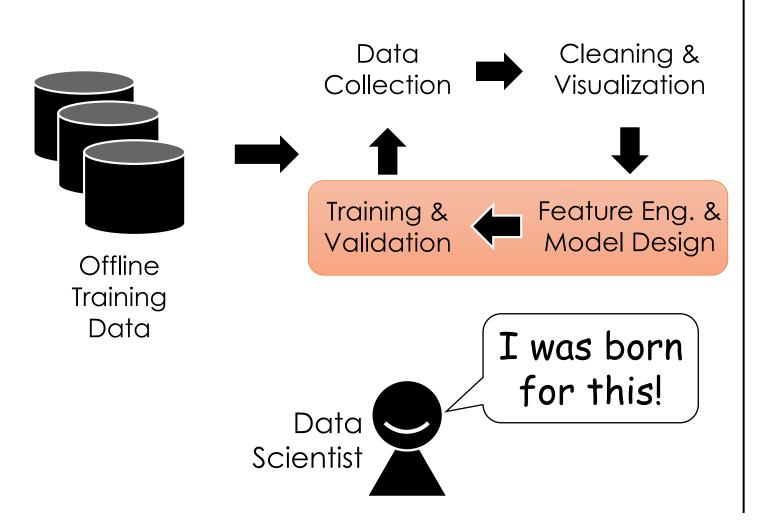
Identifying potential sources of data

Joining data from multiple sources

Addressing **missing** values and outliers

Plotting trends to identify **anomalies**

Model Development



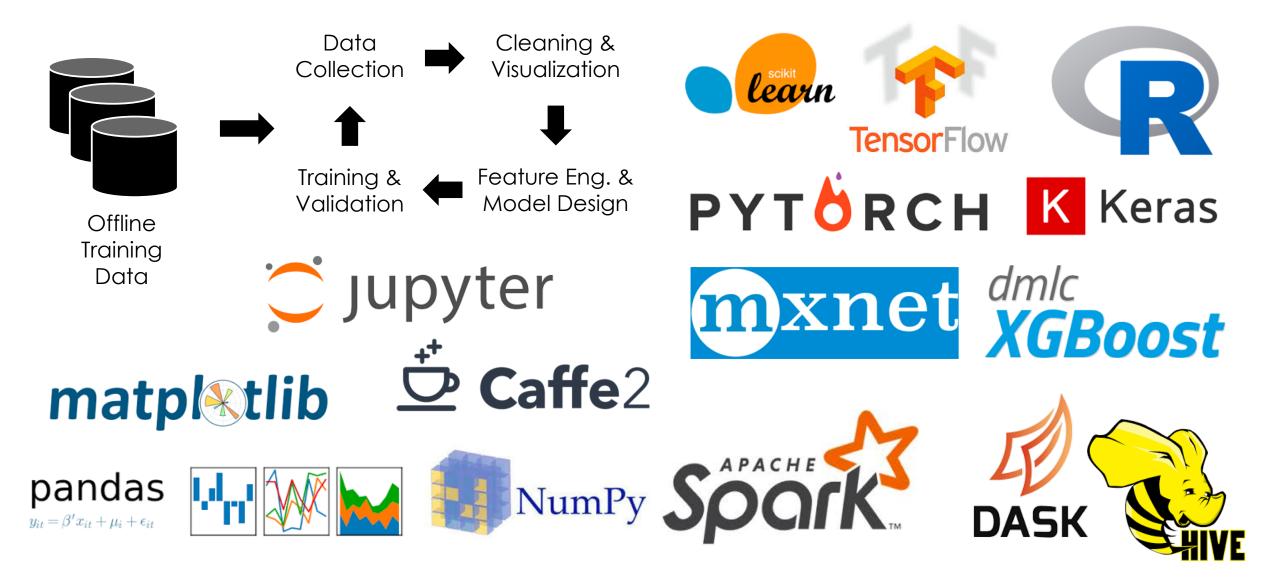
Building informative **features functions**

Designing new **model** architectures

Tuning training algos.

Validating prediction accuracy

Model Development Technologies



What is the output of Model Development

Data

Cleaning &

Cleaning &

Visualization

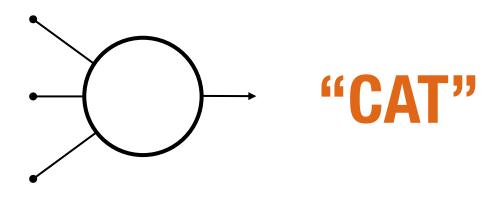
Cleaning &
Visualization
Feature Eng. &
Model Design

Reports & Dashboards



A learned function from a query to a prediction

Trained Model



consisting of **parameters** and **model structure**.

Data (10B to 10GB)

How to use the parameters...

What is the output of Model Development

Data

Cleaning &

Cleaning &

Visualization

 Offline

 Training &

 Validation

 Feature Eng. &

 Model Design

Reports & Dashboards



Why is it a **Bad Idea** to directly produce **trained models** from **model development**?

With just a trained model we are **unable to**

- 1. retrain models with new data
- 2. track data and code for **debugging**
- 3. capture **dependencies** for deployment
- 4. audit training for compliance (e.g., GDPR)

What is the output of Model Development

Data

Cleaning &

Cleaning &

Visualization

 Offline

 Training &

 Validation

 Offline

 Training &

 Other than the second se

Reports & Dashboards

What is the output of Model Development

Data

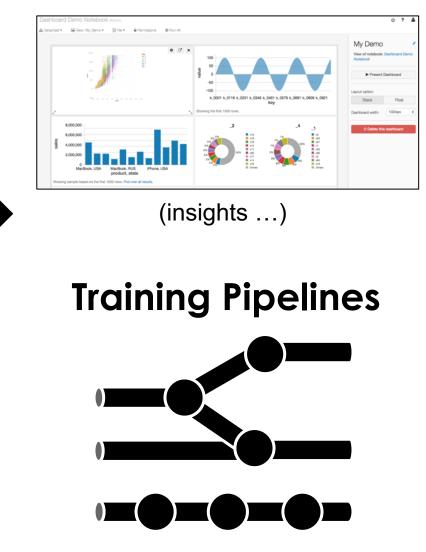
Cleaning &

Cleaning &

Visualization

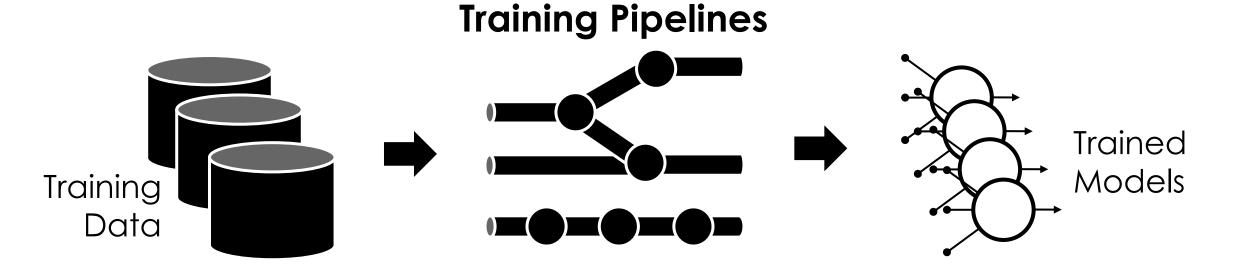
Offline
Training &
Validation
Feature Eng. &
Model Design

Reports & Dashboards



Training Pipelines Capture the **Code** and **Data Dependencies**

Description of how to train the model from data sources



Software | Training Pipelines → Code Engineering | Analogy | Trained Models → Binaries

What is the output of Model Development

Data

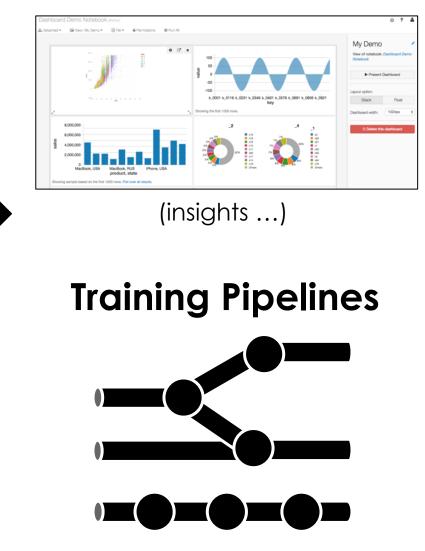
Cleaning &

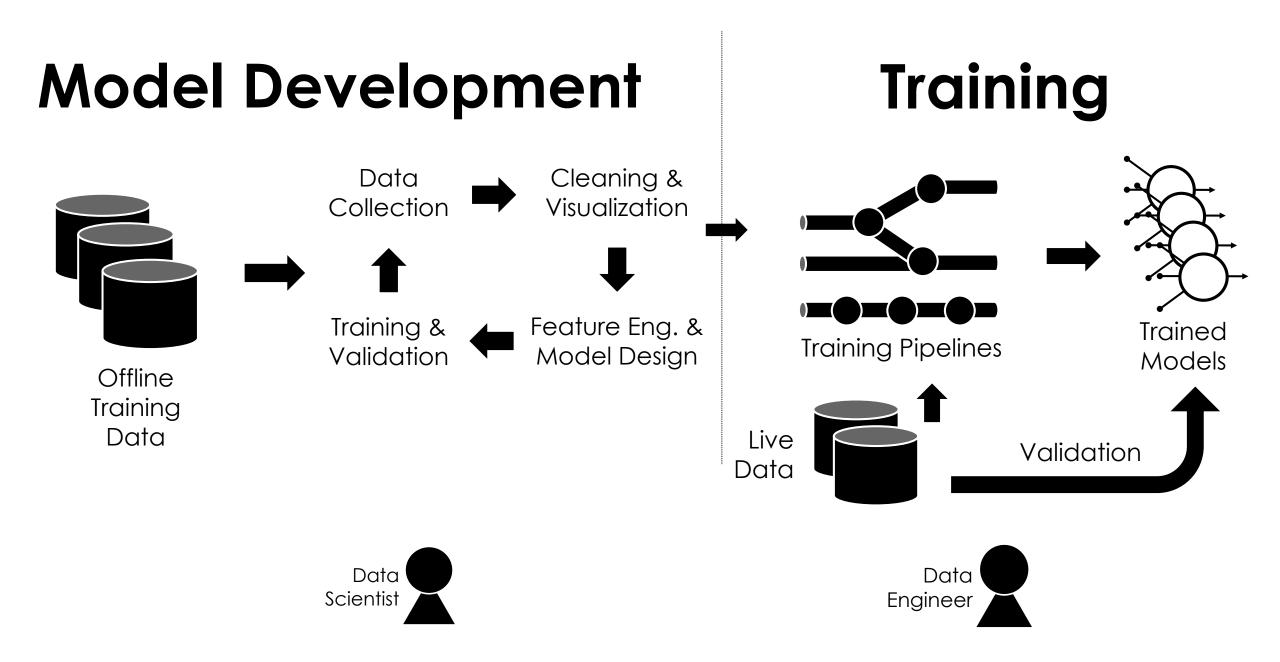
Cleaning &

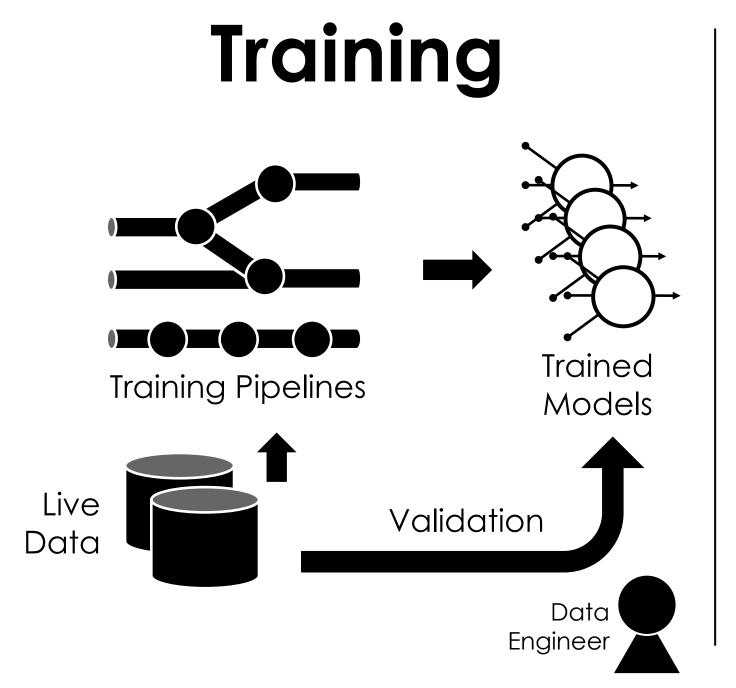
Visualization

Offline
Training &
Validation
Feature Eng. &
Model Design

Reports & Dashboards







Training models **at scale** on **live data**

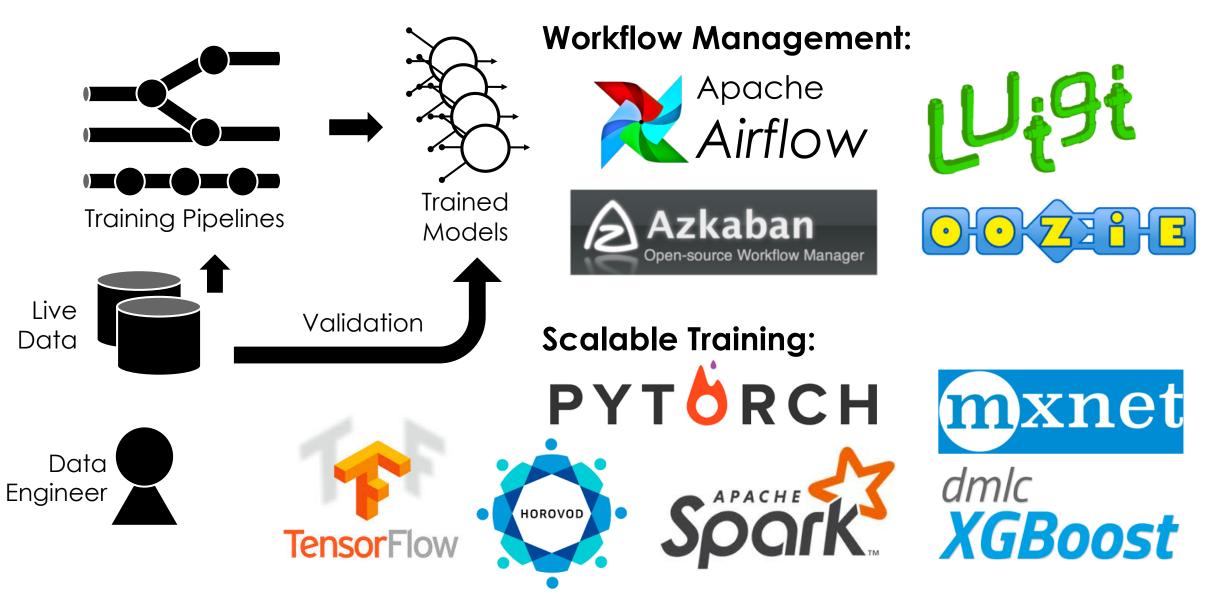
Retraining on new data

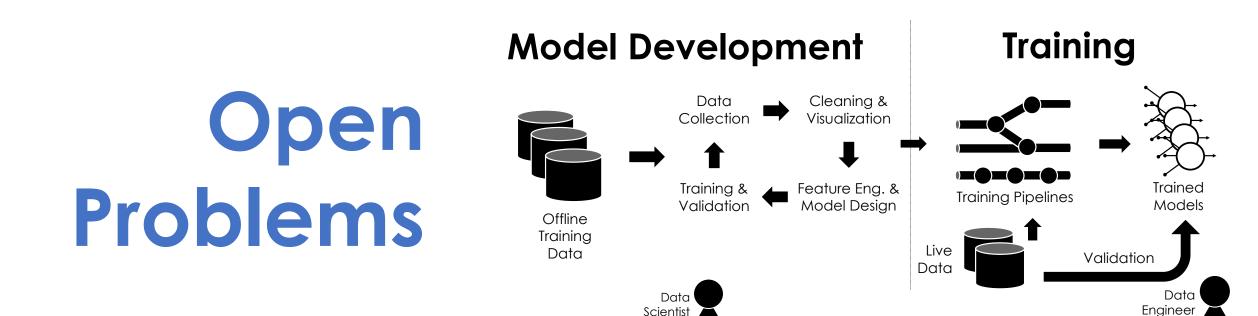
Automatically **validate** prediction accuracy

Manage model versioning

Requires **minimal expertise** in machine learning

Training Technologies

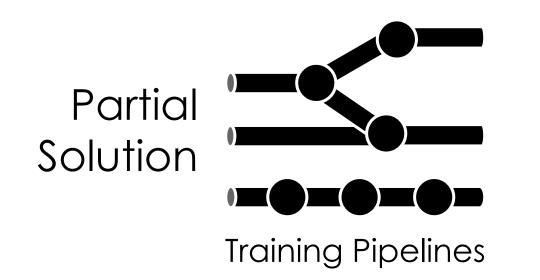




Context & Composition

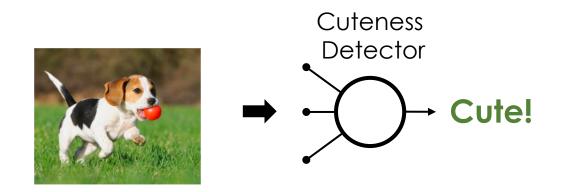
Context How, What, & Who?

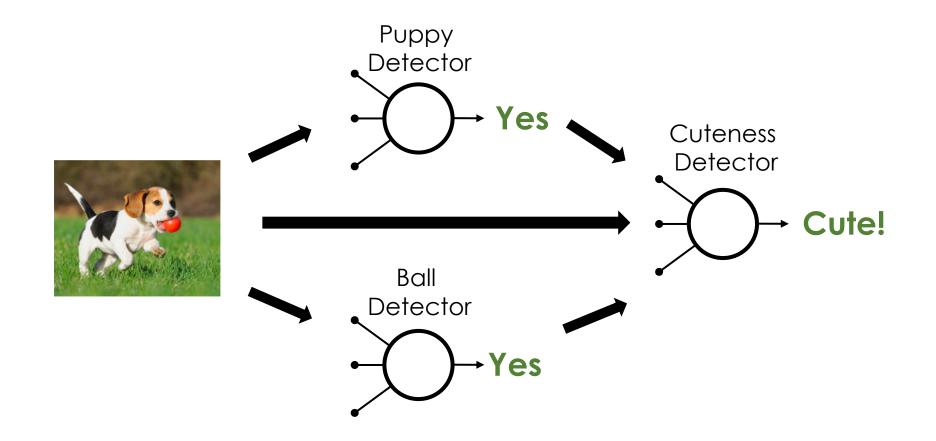
- > **How** was the model or data created?
- > What is the latest or best version?
- > Who is responsible? (blame...)

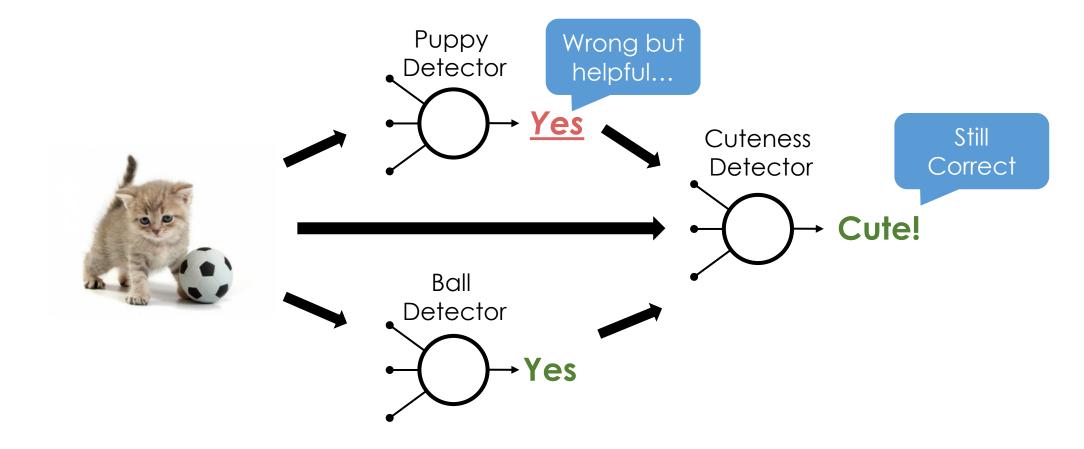


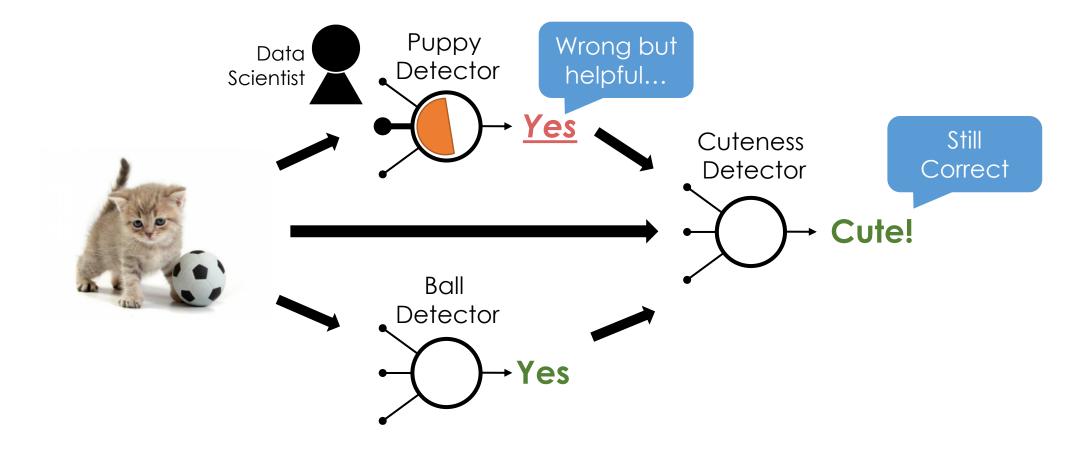
Track relationships between

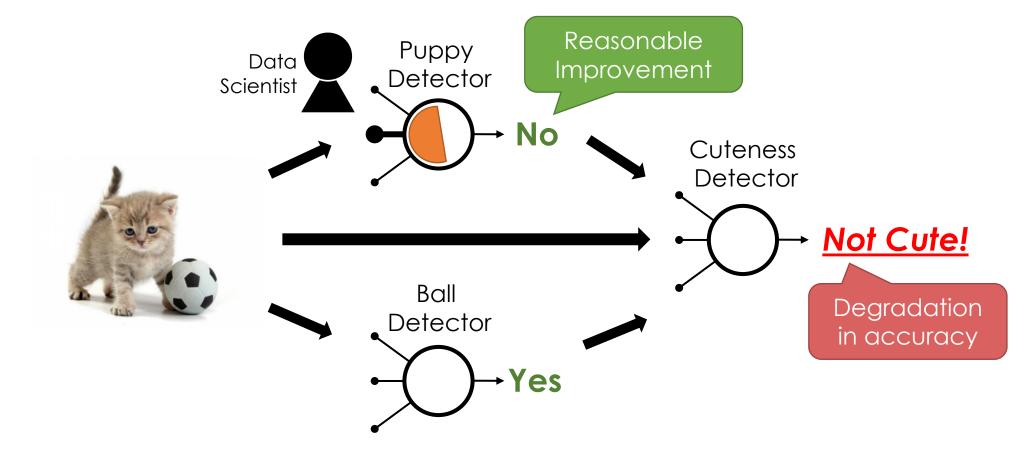
- 2. Model & Data versions
- 3. People (versions?)





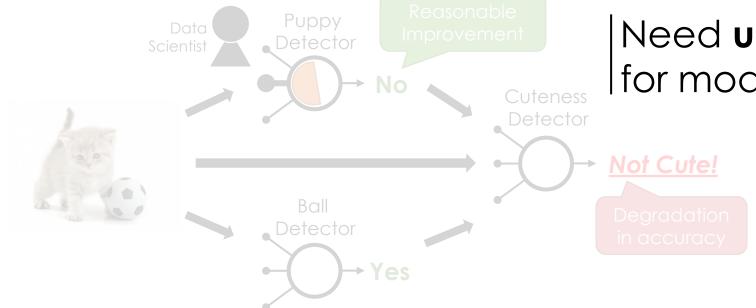






Models are being composed to solve new problems

Need to track composition and validate **end-to-end accuracy**.



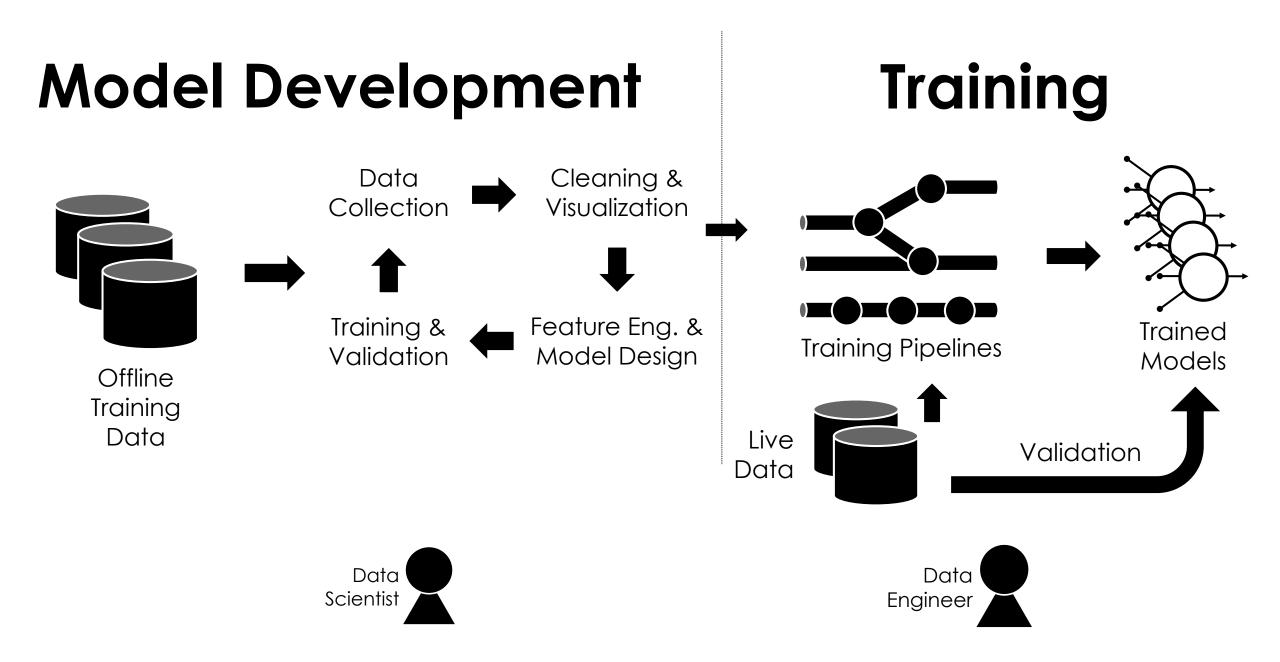
Need **unit** and **integration** testing for models.

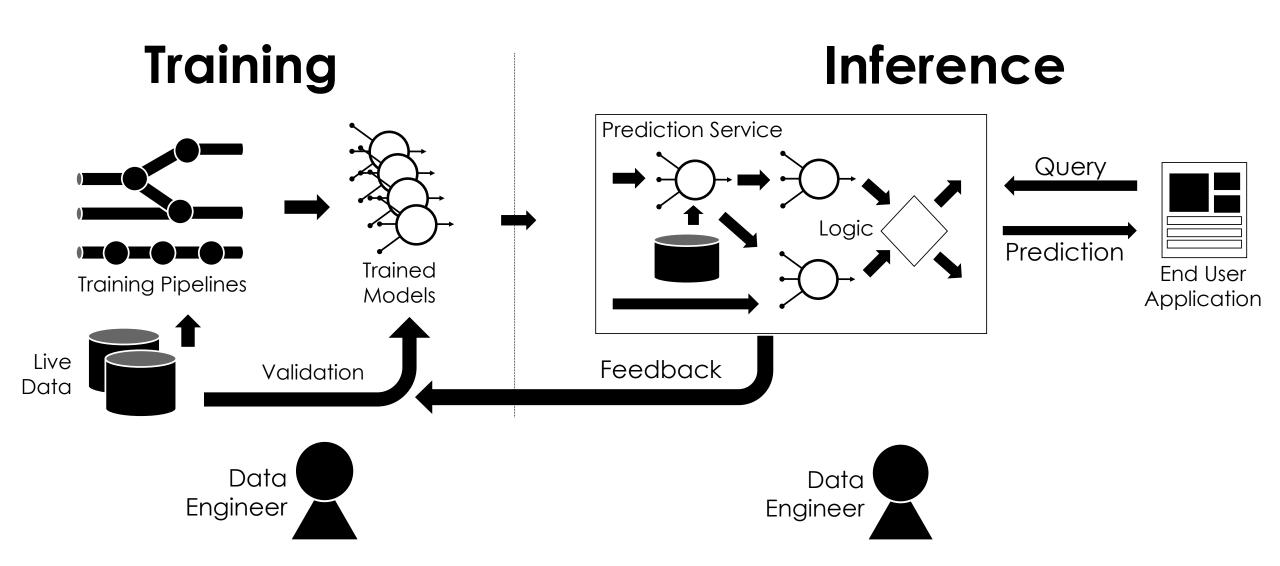
Active **Research** in the **Tise** for Model Development and Training

A an open source **context management** service that spans multiple data systems <u>http://www.ground-context.org/</u> flor

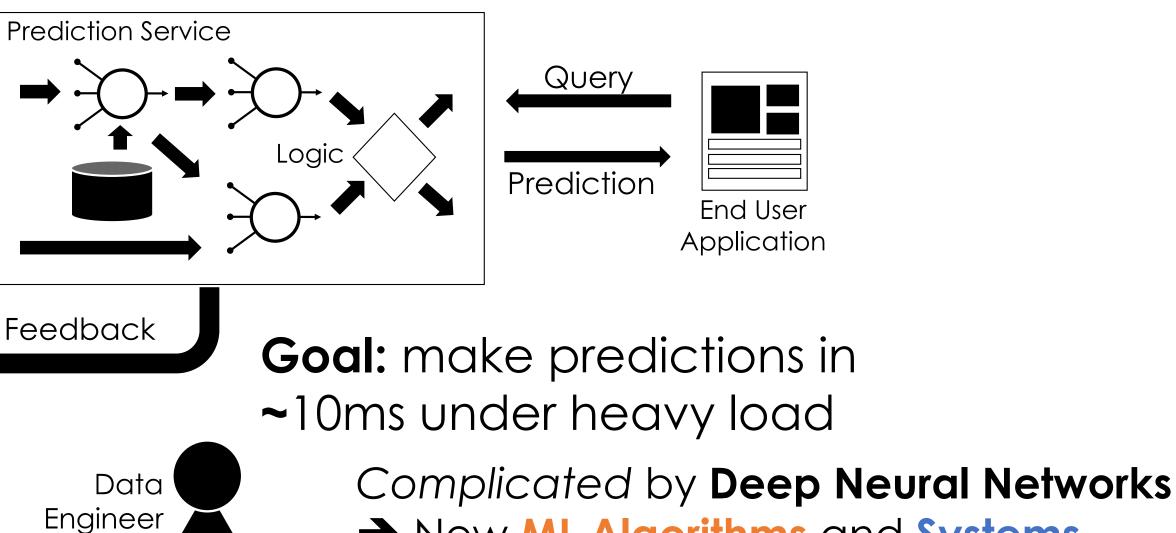
An experiment management

designed to track data, code, and people and address reproducibility <u>https://github.com/ucbrise/flor</u>



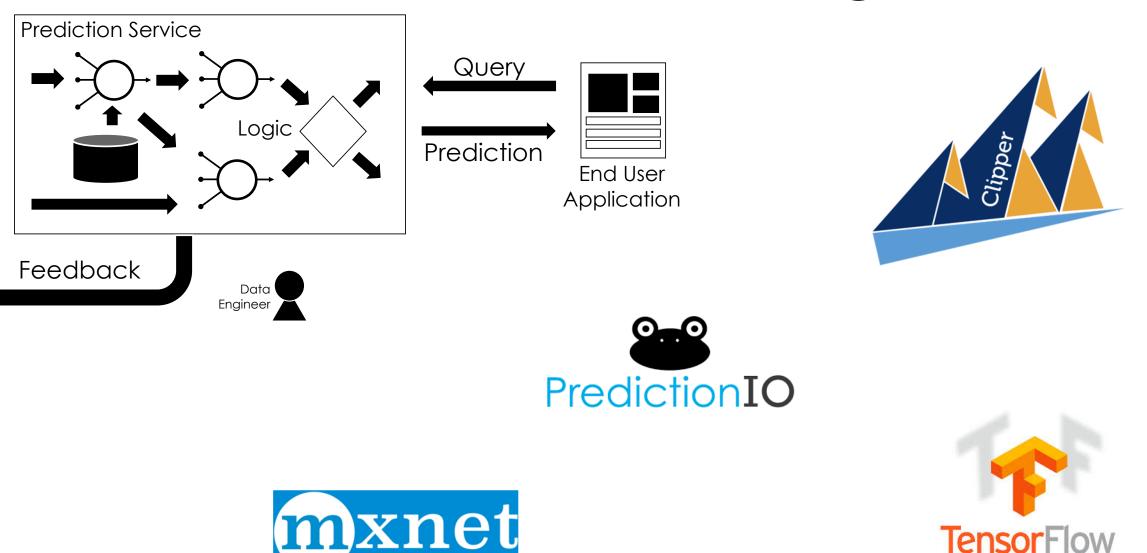


Inference

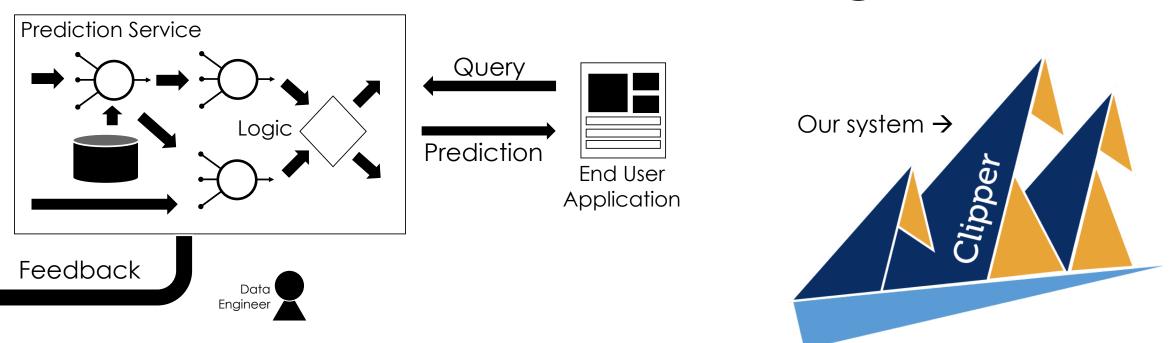


→ New ML Algorithms and Systems

Inference **Technologies**



Inference **Technologies**



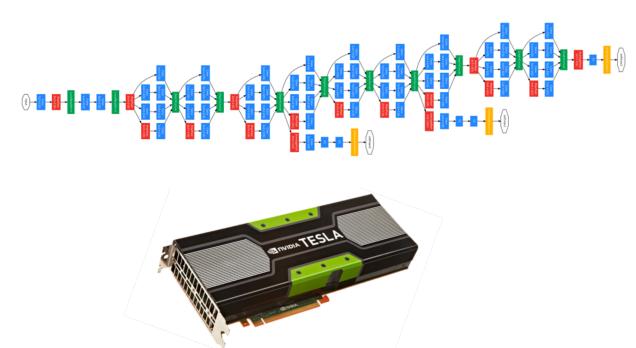
Specialized in Particular Models or Frameworks

Deploying Interactive Machine Learning Applications with Clipper

Joseph E. Gonzalez Co-director of the RISE Lab jegonzal@cs.berkeley.edu The remainder of this talk ...

Challenges of prediction serving
 Clipper architecture overview
 Open-source system effort

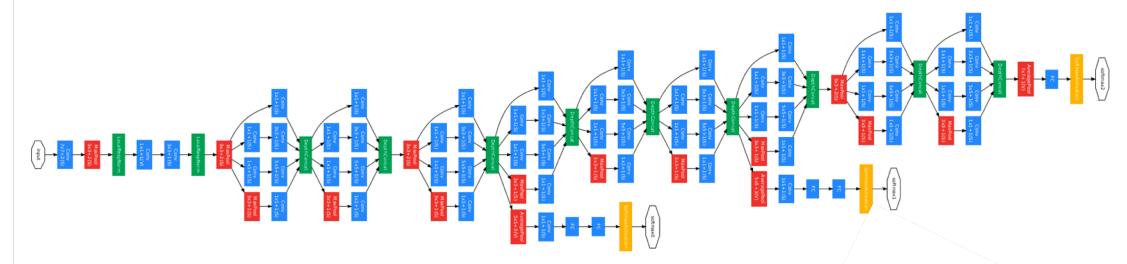
Prediction-Serving Challenges



Support low-latency, highthroughput serving workloads

Large and growing ecosystem of ML models and frameworks

Support low-latency, high-throughput serving workloads



Models getting more complex

> 10s of GFLOPs [1]

Deployed on critical path

Maintain SLOs under heavy load

Canvilan TESLA

Using specialized hardware for predictions

[1] Deep Residual Learning for Image Recognition. He et al. CVPR 2015.

Google Translate

Serving

Google			0	۲
Translate	Turn off insta	ant tran	slation	0
140	billion words a	C	dc	יעכ

0/5000

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

"If each of the **world's Android phones** used the new Google voice search for just **three minutes a day**, these engineers realized, the company would **need twice as many data centers.**" – Wired

82,000 GPUs running 24/7

Designed New Hardware! Tensor Processing Unit (TPU)



Building Application Specific Systems

Problems:

- Expensive to build and maintain
 - Require ML and systems expertise
- Tightly-coupled model and application
 - Difficult to change or update application
- Only supports single ML framework

Growing ecosystem of ML Frameworks

Fraud Detection

Content Rec.

Personal Asst. Robotic Control Machine Translation

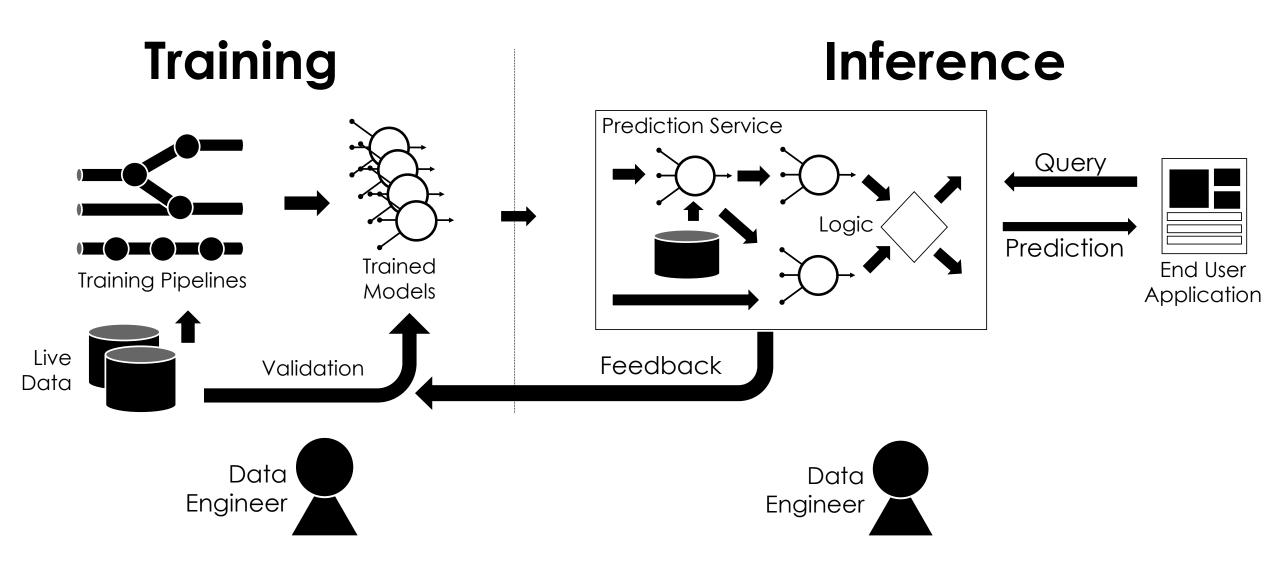
theano Soork Caffe TensorFlow

Building & maintaining separate serving systems for each framework is expensive!

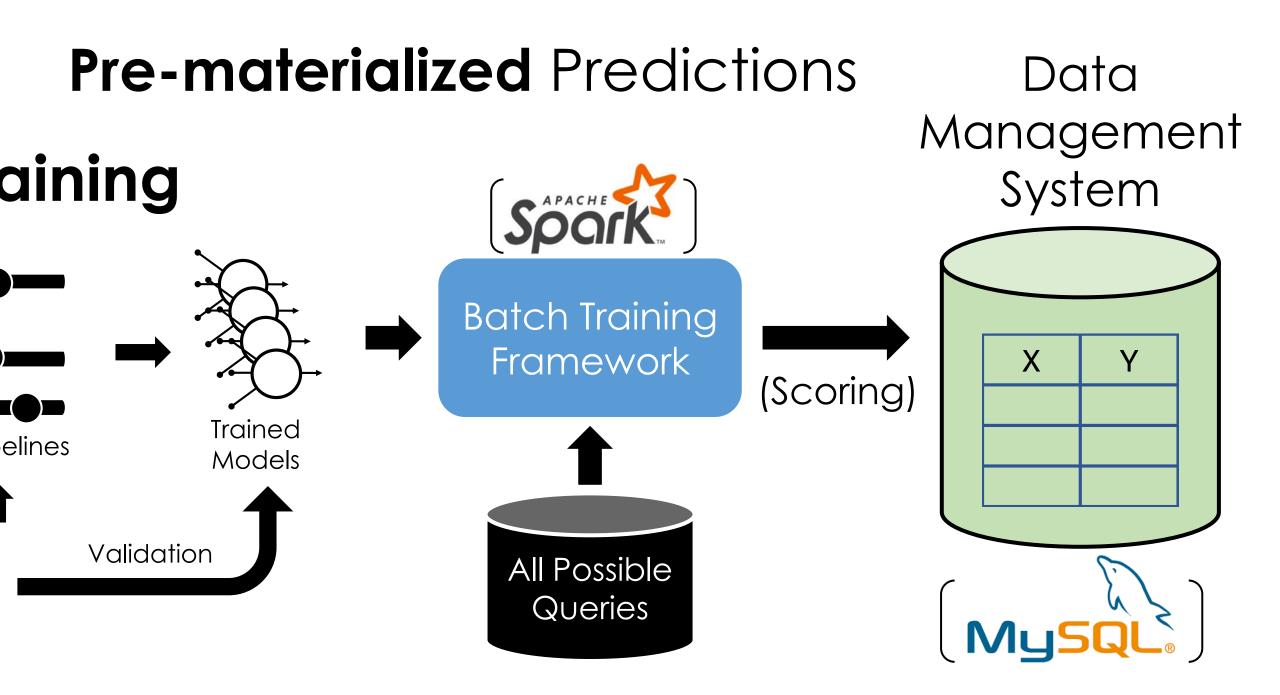
Solution

Pre-materialize predictions into a low latency Data Management System

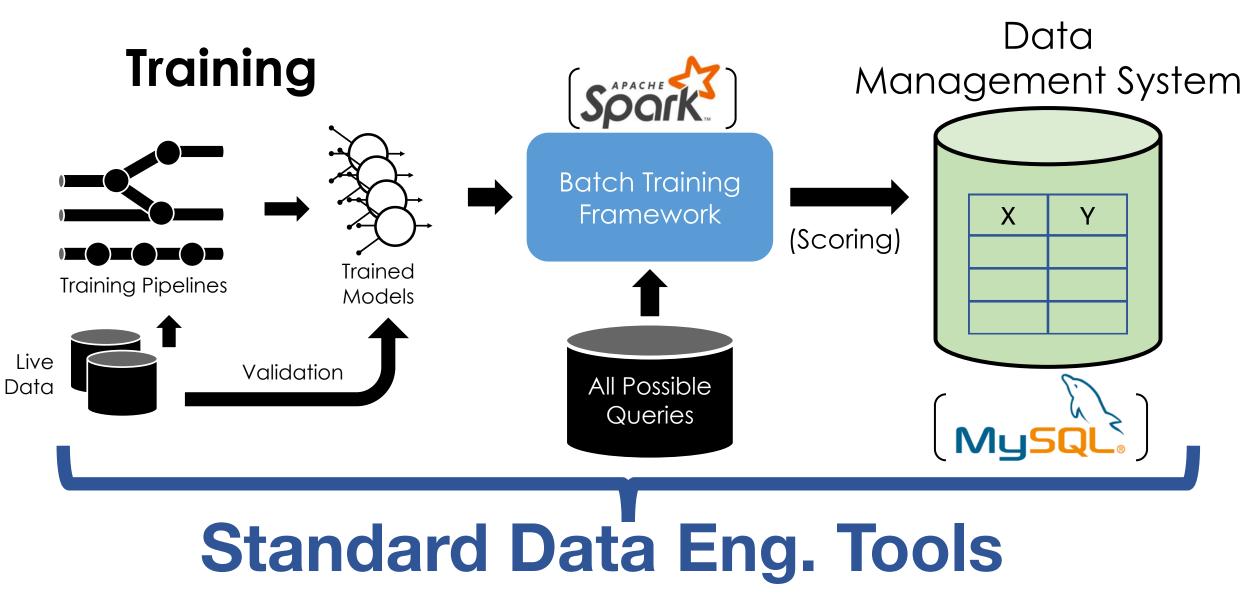
Pre-materialized Predictions



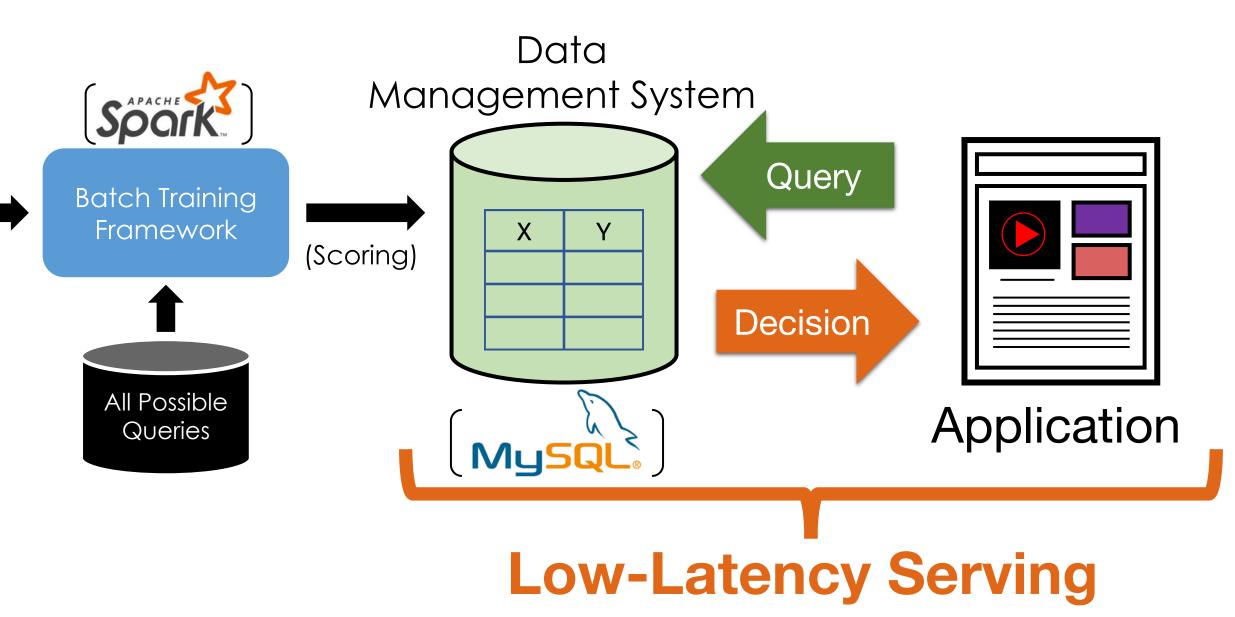
Pre-materialized Predictions Training CAPACHE Batch Training Framework Trained Training Pipelines Models Live Validation All Possible Data Queries



Pre-materialized Predictions



Serving Pre-materialized Predictions



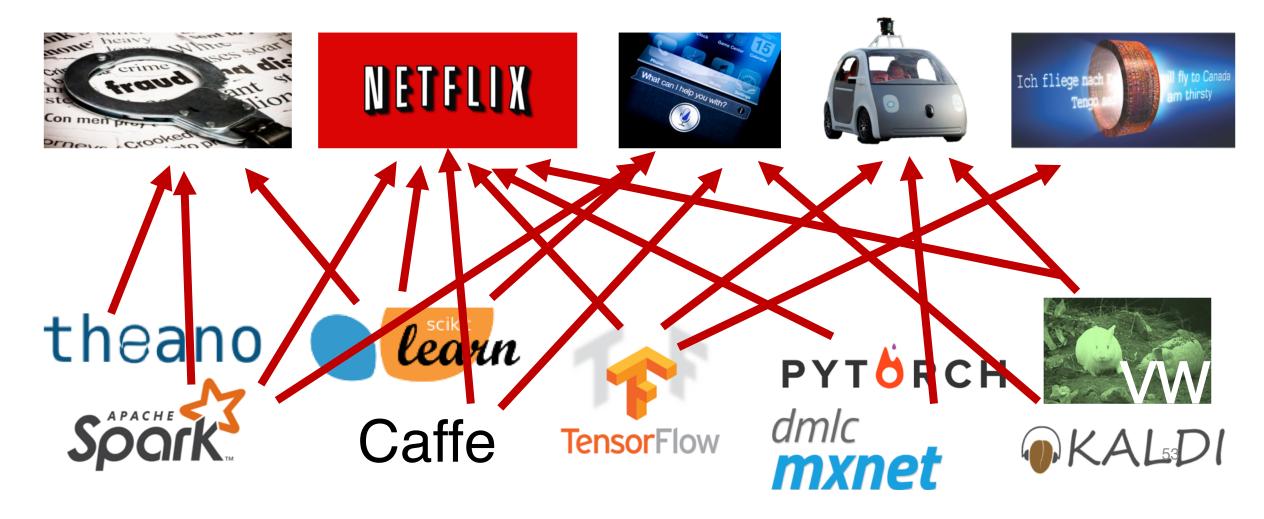
Serving Pre-materialized Predictions

Problems: Management System

- Requires full set of queries ahead of time
 - Small and bounded input domain
- Requires substantial computation and space
 - Example: scoring all content for all customers!

Low-Latency Serving

Wide range of application and frameworks

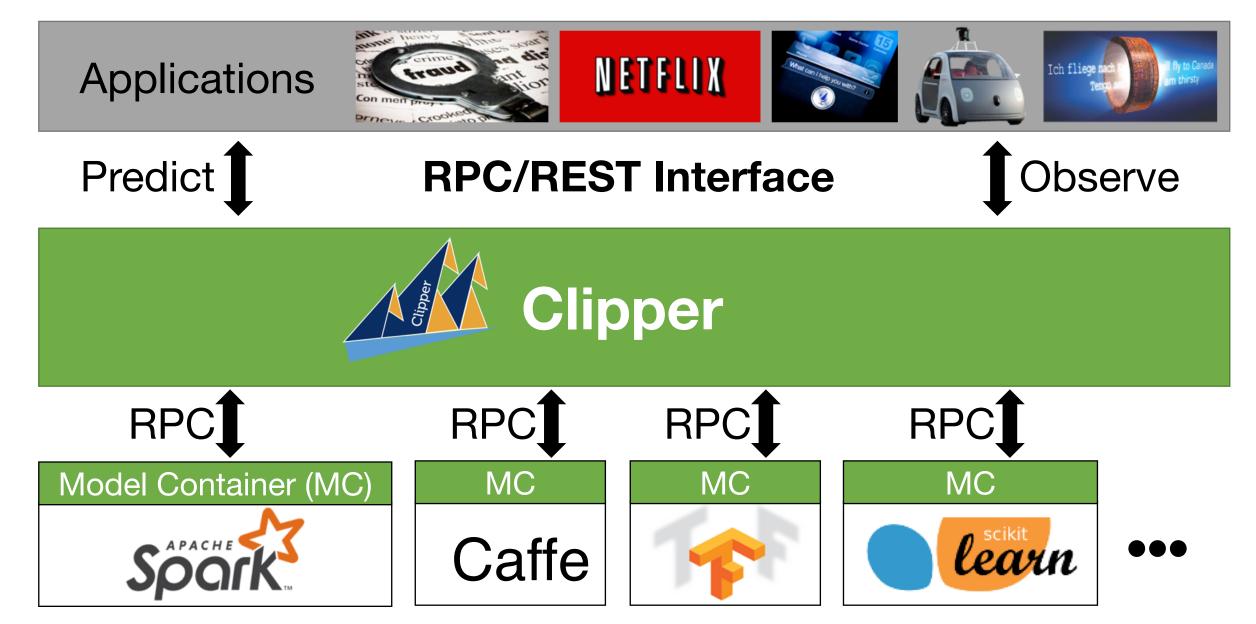


Middle layer for prediction serving.

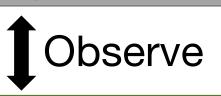
Common Abstraction

System Optimizations

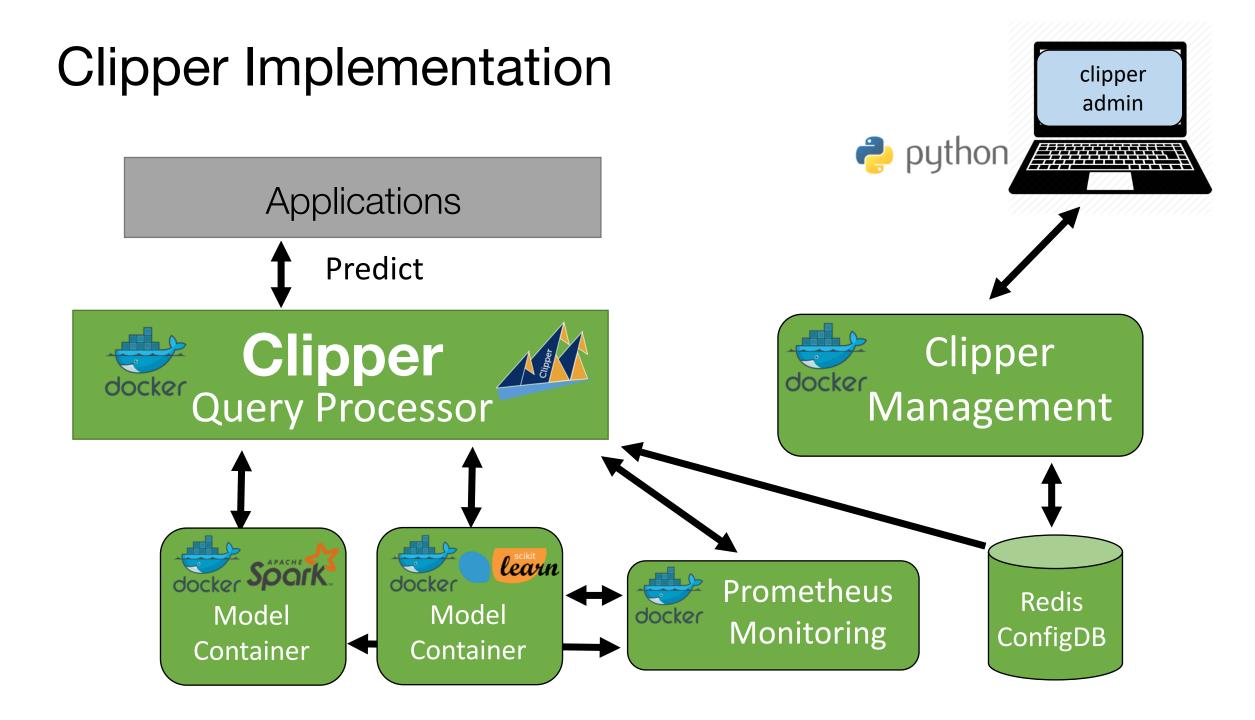
Clipper Decouples Applications and Models



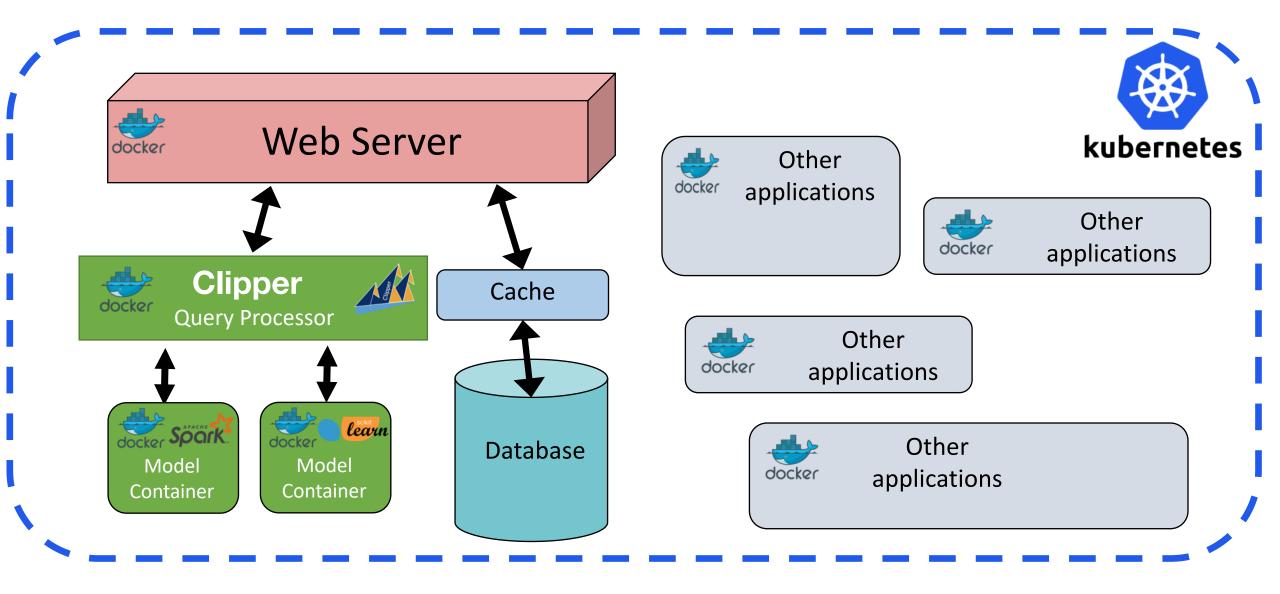
Predict



Core system: 10K lines of C++ and 8K lines of Python
 Open Source (Apache License) - <u>http://clipper.ai</u>
 Designed to support production level query traffic
 Deliver low + predictable latency
 Research goal: study reality ...



Run alongside other applications with Kubernetes



Getting Started with Clipper

Tutorials at <u>http://clipper.ai</u>

Docker images available on DockerHub

Clipper admin is distributed as **pip package**:

pip install clipper_admin

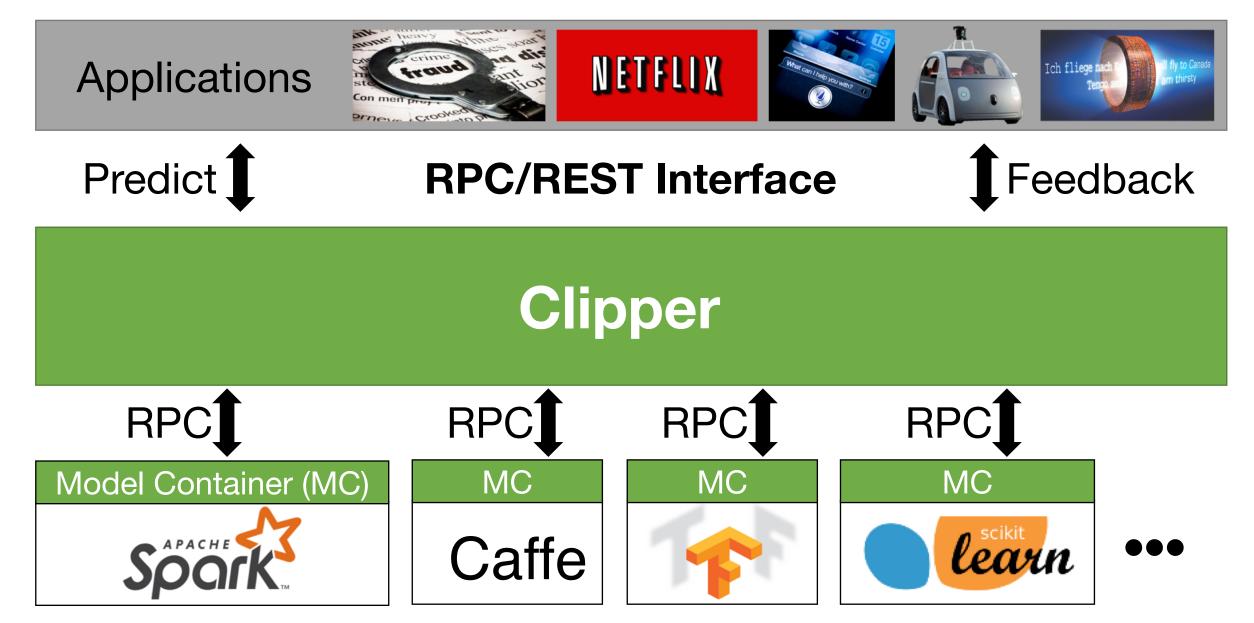
Get up and running without compiling

Clipper Design Innovations

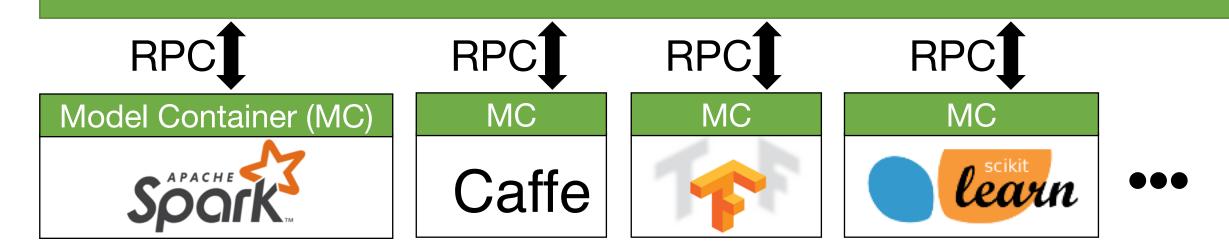
Containerized frameworks: unified abstraction and framework level isolation and scaling

Cross-framework caching and batching: optimize throughput and latency

Cross-framework model composition: improved accuracy through ensembles and bandits



Clipper



Common Interface \rightarrow Simplifies Deployment:

Evaluate models using original code & systems

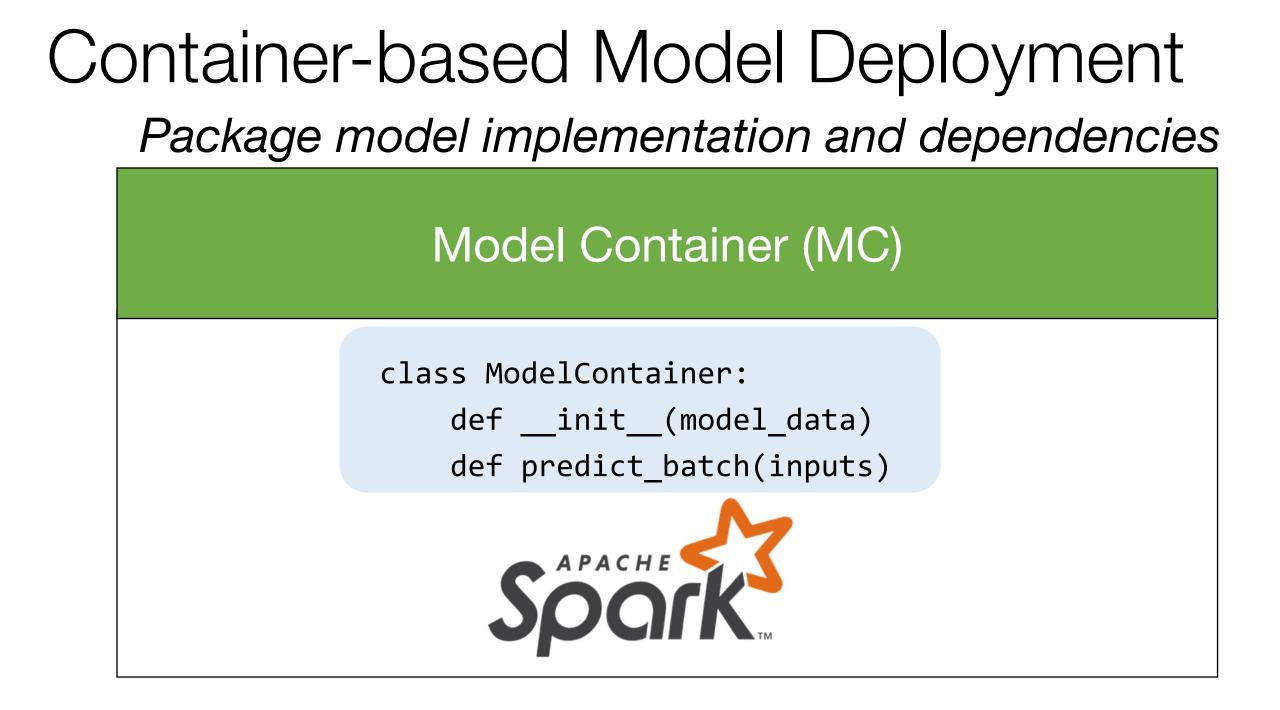
Container-based Model Deployment

Implement Model API:

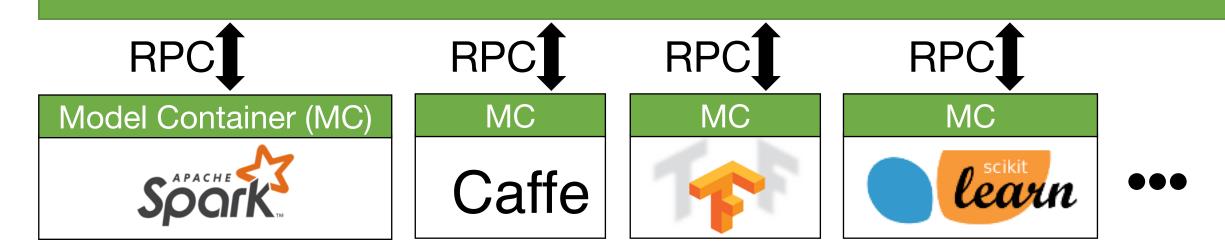
class ModelContainer: def __init__(model_data) def predict_batch(inputs)

> API support for many programming languages

- > Python
- Java
- ≻ C/C++
- ≻ R

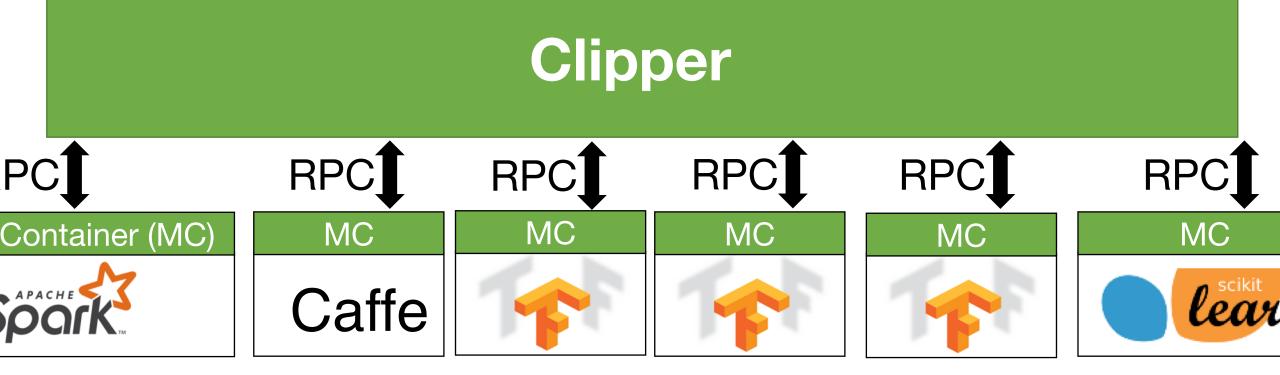


Clipper



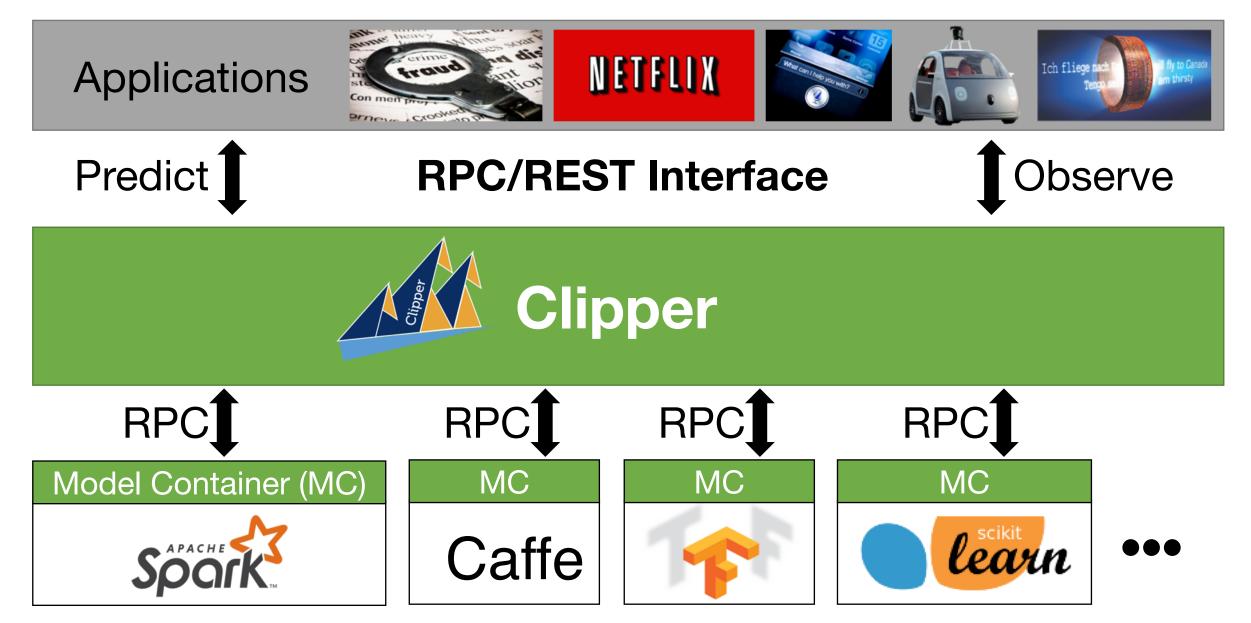
Common Interface \rightarrow Simplifies Deployment:

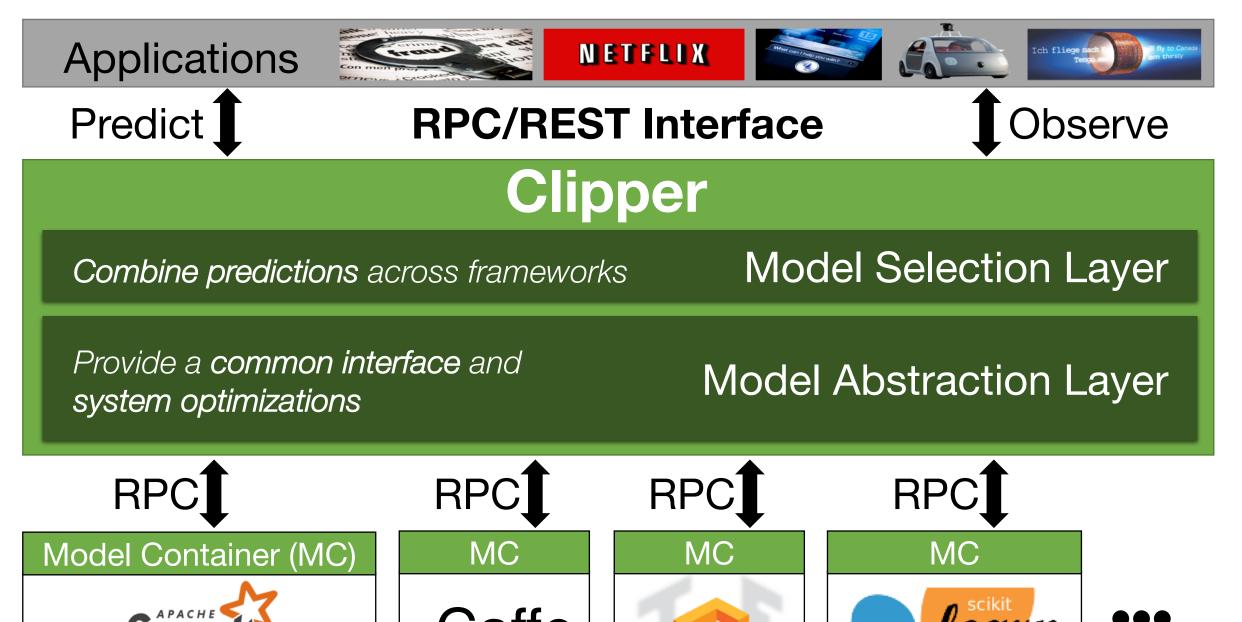
- Evaluate models using original code & systems
- > Models run in separate processes as Docker containers
 - Resource isolation: ML frameworks can be buggy



Common Interface \rightarrow Simplifies Deployment:

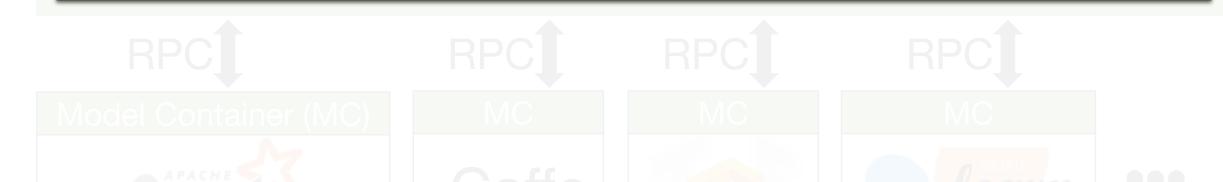
- Evaluate models using original code & systems
- > Models run in separate processes as Docker containers
 - Resource isolation: ML frameworks can be buggy
 - Scale-out at the level of individual models





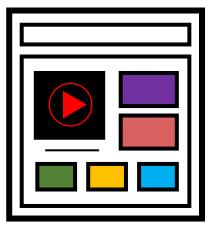
Provide a common interface and system optimizations

Model Abstraction Layer



Batching to Improve Throughput

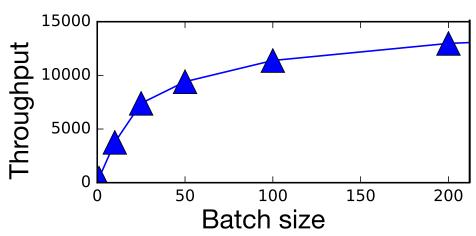
> Why batching helps:



A single page load may generate many queries

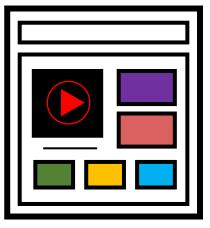
- Optimal batch depends on:
 - hardware configuration
 - model and framework
 - system load

Throughput-optimized frameworks



Latency-aware Batching to Improve Throughput

> Why batching helps:



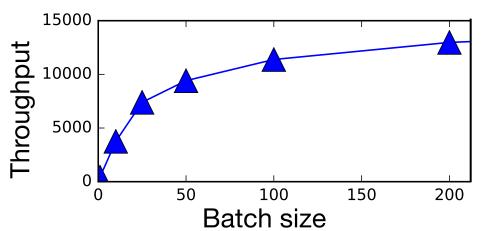
A single page load may generate many queries

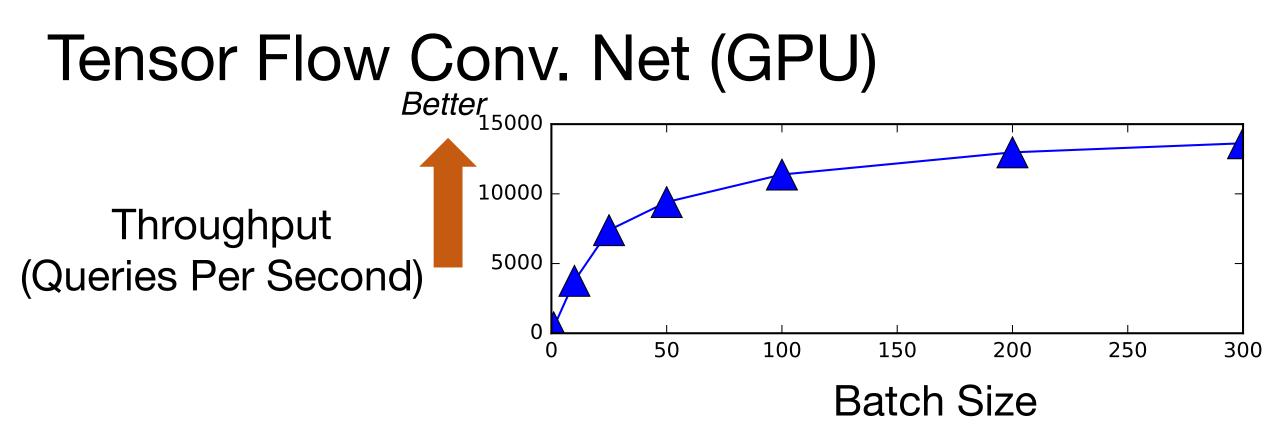
- Optimal batch depends on:
 - hardware configuration
 - model and framework
 - system load

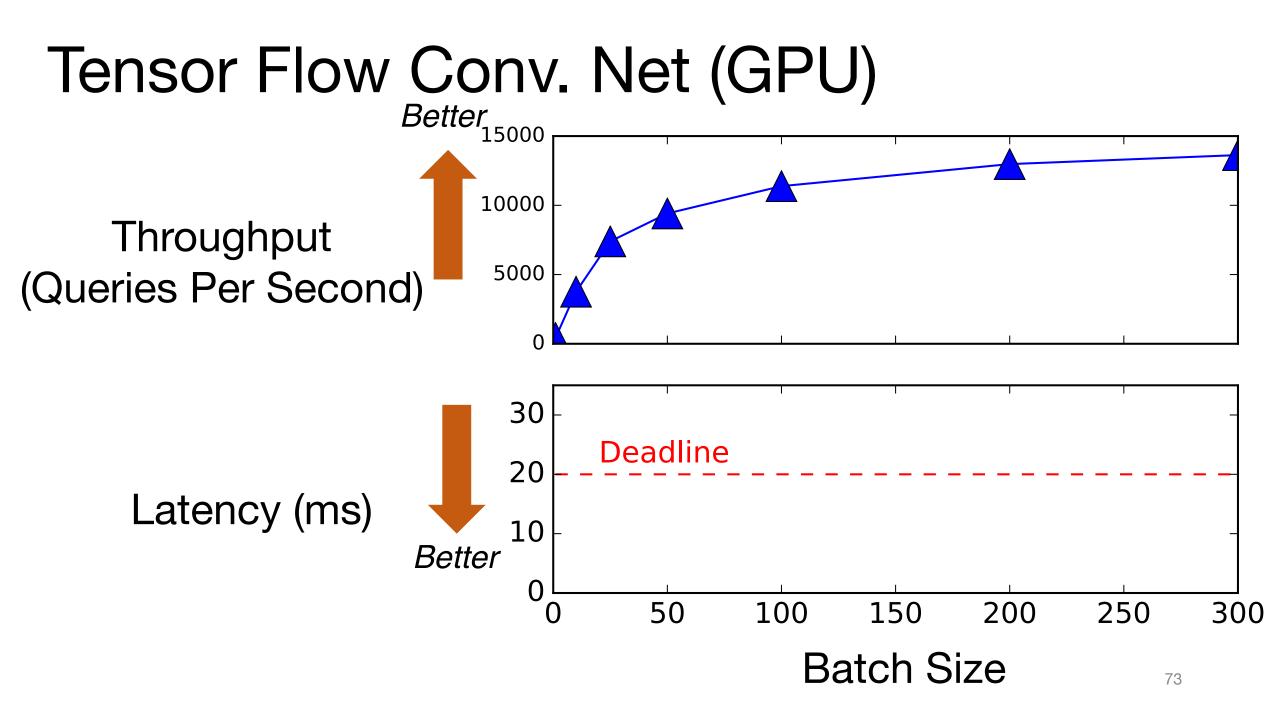
Clipper Solution:

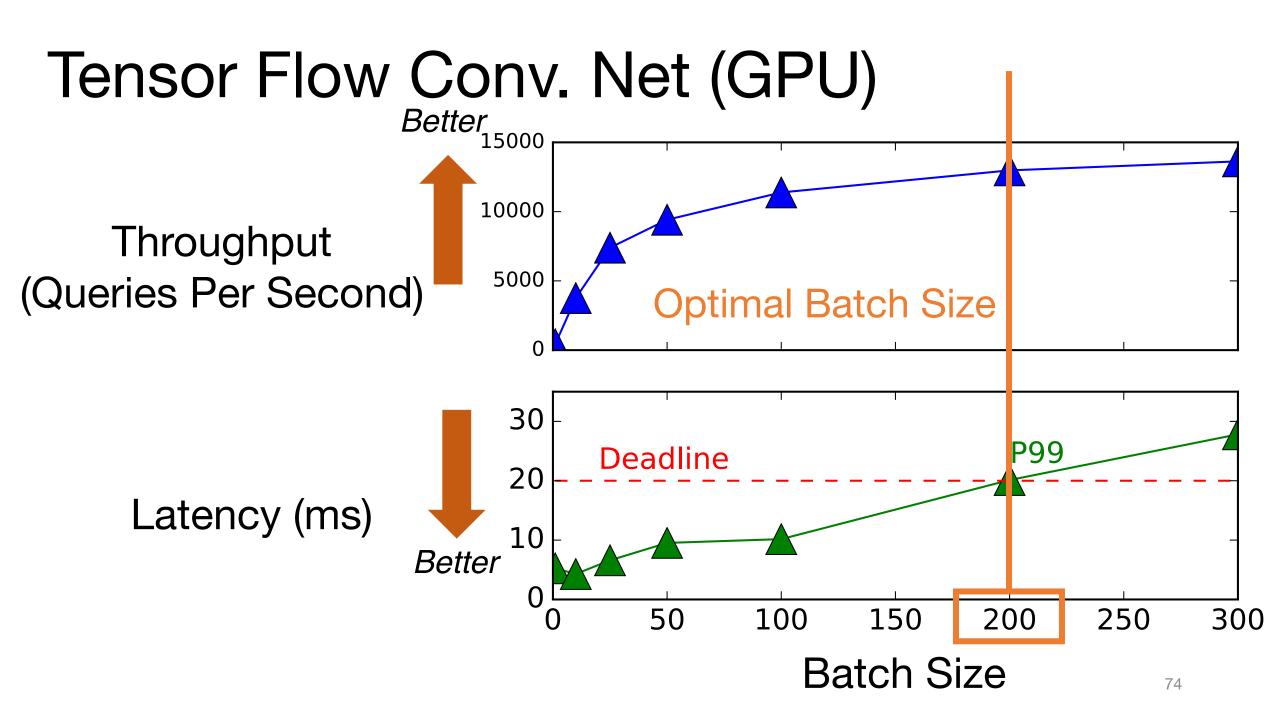
Adaptively tradeoff latency and throughput...

- Inc. batch size until the latency objective is exceeded (Additive Increase)
- If latency exceeds SLO cut batch size by a fraction (Multiplicative Decrease)

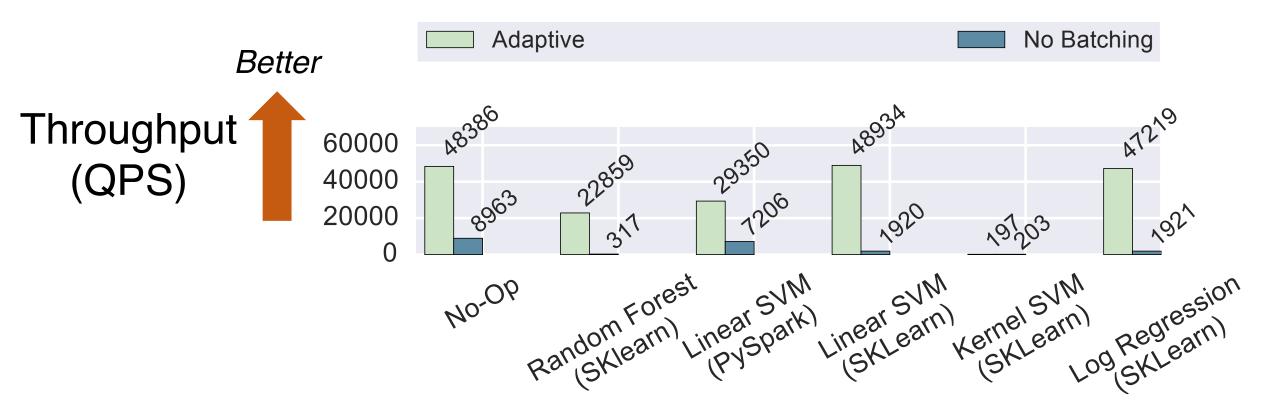




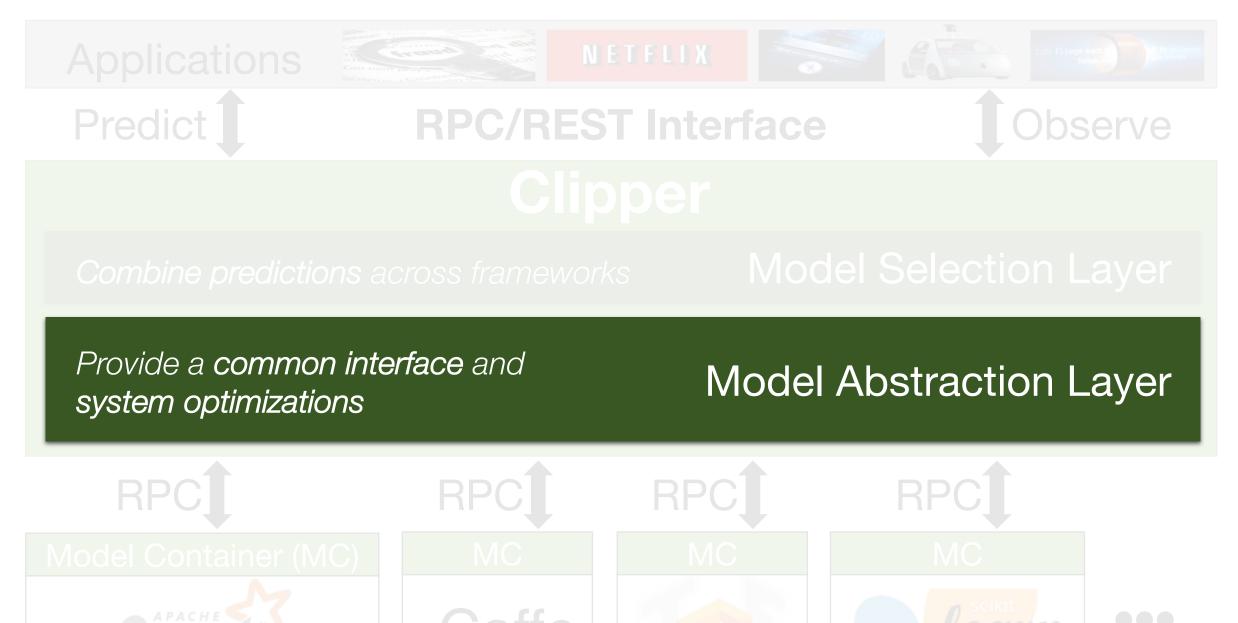




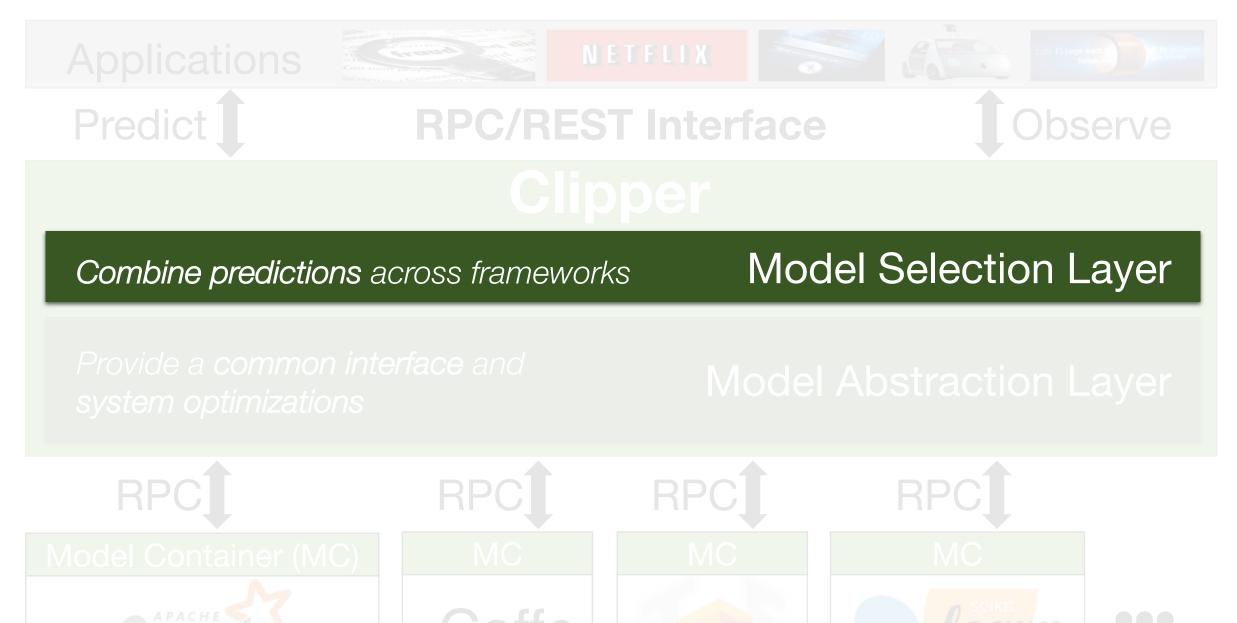
Latency-aware Batching to Improve Throughput



Clipper Architecture



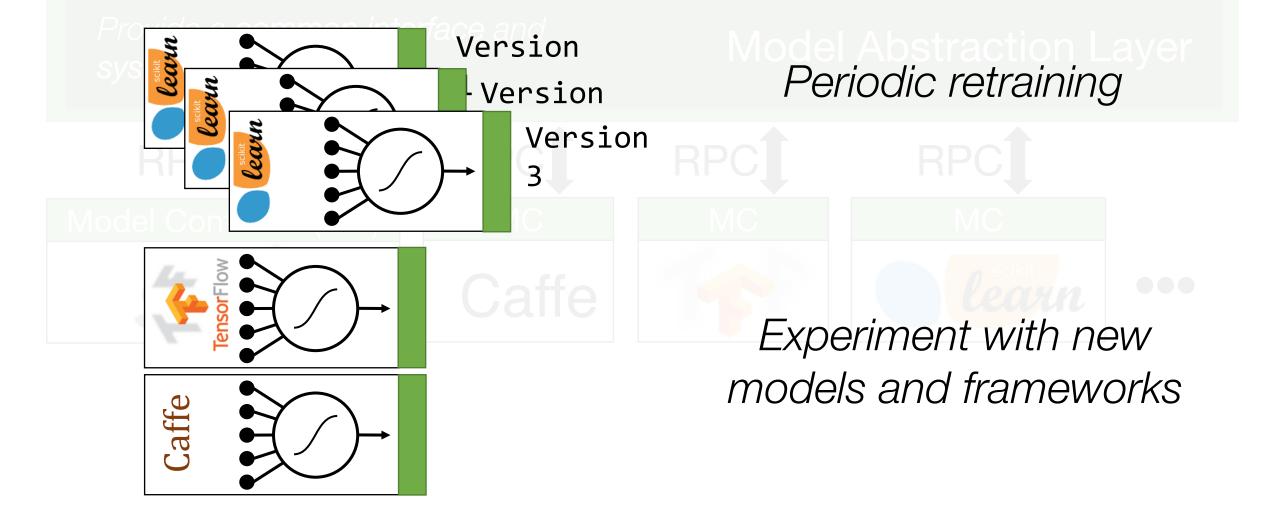
Clipper Architecture



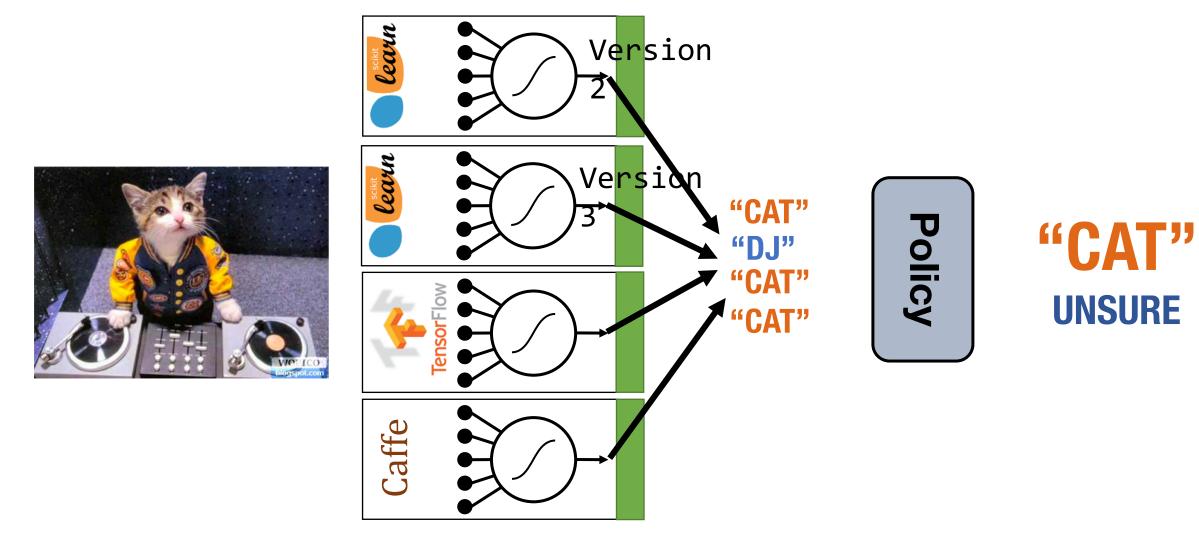
Clipper

Combine predictions across frameworks

Model Selection Layer

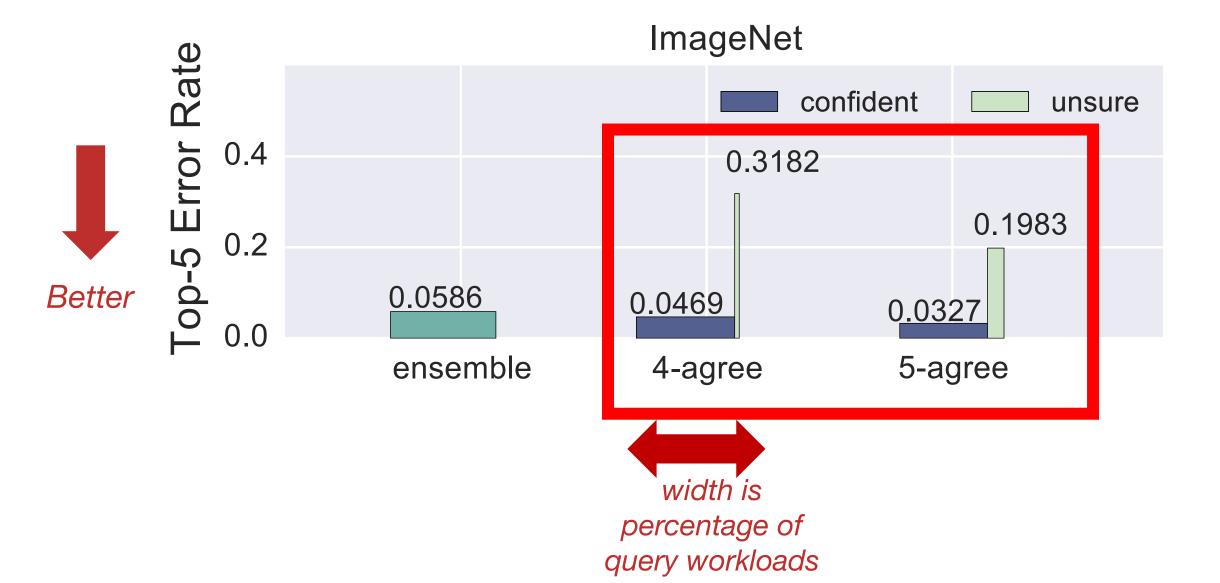


Selection Policy can Calibrate Confidence



Selection Policy: Estimate confidence

Selection Policy: Estimate confidence

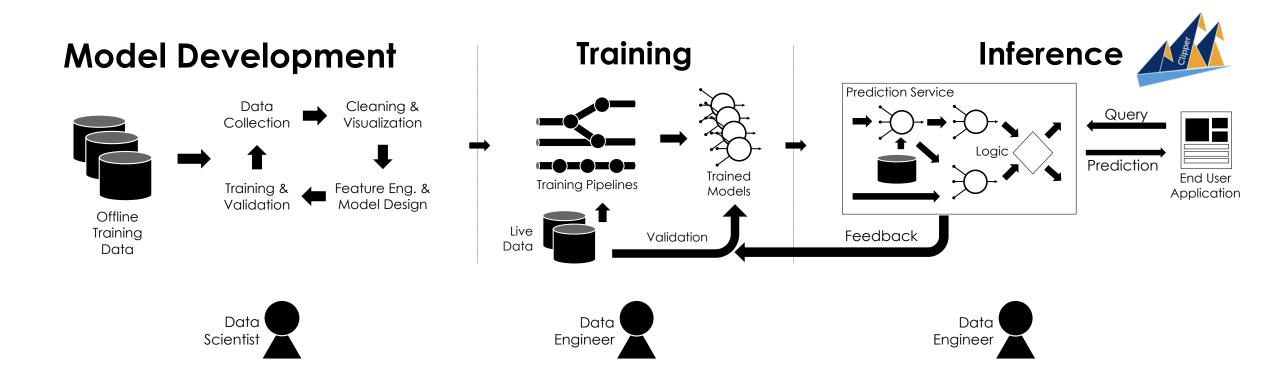


Project Status and Development

- Current development focus:
 - stability and performance improvements
 - easy model deployment for common ML frameworks: Pytorch, caffe2 (via onnx), tensorflow, xgboost, mxnet, pyspark, scikit learn
 - metrics and monitoring infrastructure using Prometheus
- > **Development Team:** 22 active contributors
 - Including 8 from outside Berkeley
- > Working with several organizations on **production deployments**
 - > SAP, Scotia Bank, Pacific AI, ARM...

I made a case for Model & Data Engineering and outlined some of the opportunities & challenges

Machine Learning Lifecycle



Middle layer for prediction serving.

CommonSystemAbstractionOptimizations

Open-source prediction serving system for low-latency, high-throughput predictions across machine learning models and frameworks.

libber

Thank you! jegonzal@berkeley.edu

Collaborators

Daniel

Rolando Crankshaw Garcia

Joe Hellerstein Yika Simon

Мо

Luo

Vikram Sreekanti lon

Stoica

Alexey Tumanov

Xin Wang

Neeraja Yadwadkar

Corey Zumar

Research Sponsors

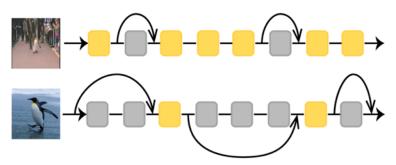
Bonus!

A few of the RISE Lab projects ...

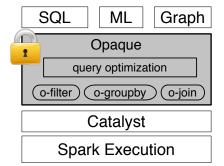
Real-time Inference

DK Prediction Cascades

Teaching AI to think fast by **learning not to overthinking**



SkipNets: RL for Dynamic Network Design



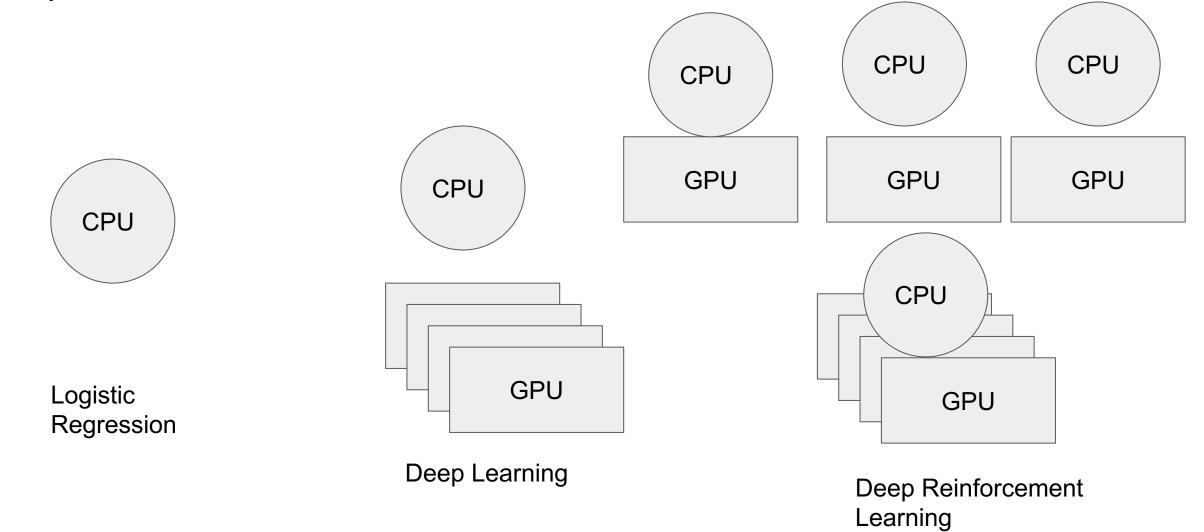
Hardware Security for Apache Spark

An open platform for **Autonomous Vehicles**

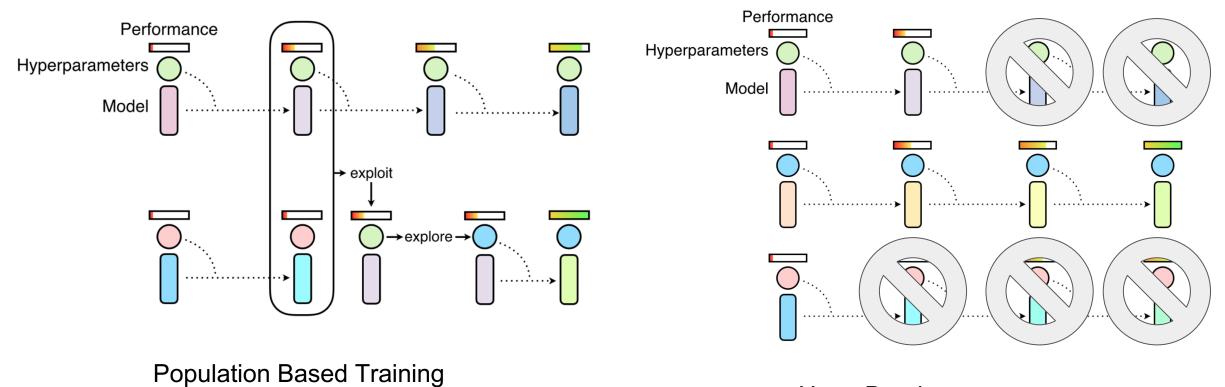
Parallel Python for Reinforcement Learning

Ray Tune

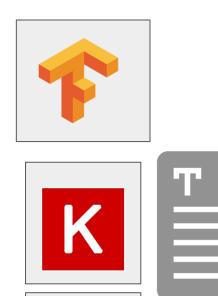
RL and Deep Learning workloads demand different resource requirements.

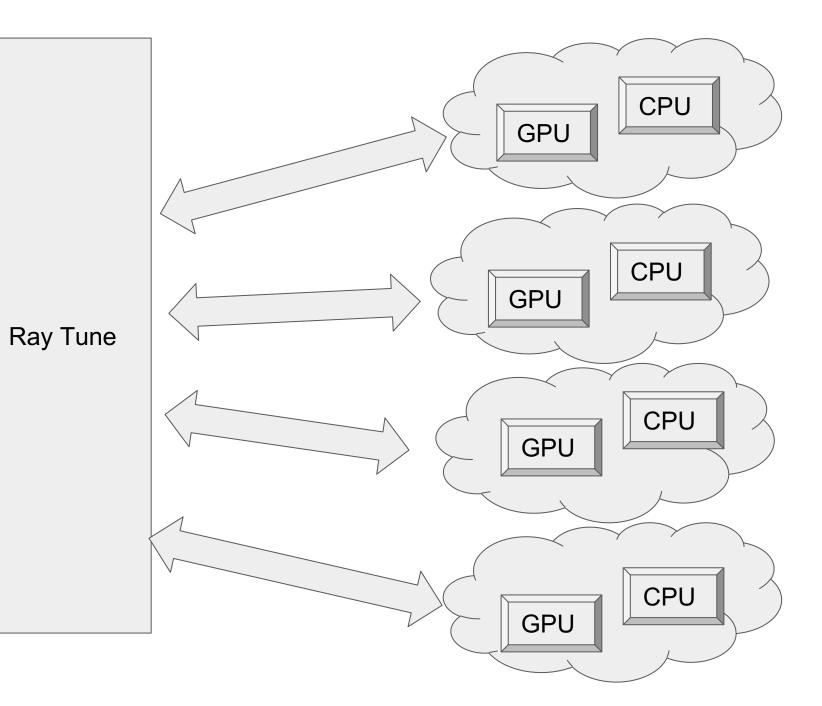


New Algorithms for hyperparameter tuning require more complicated control flows



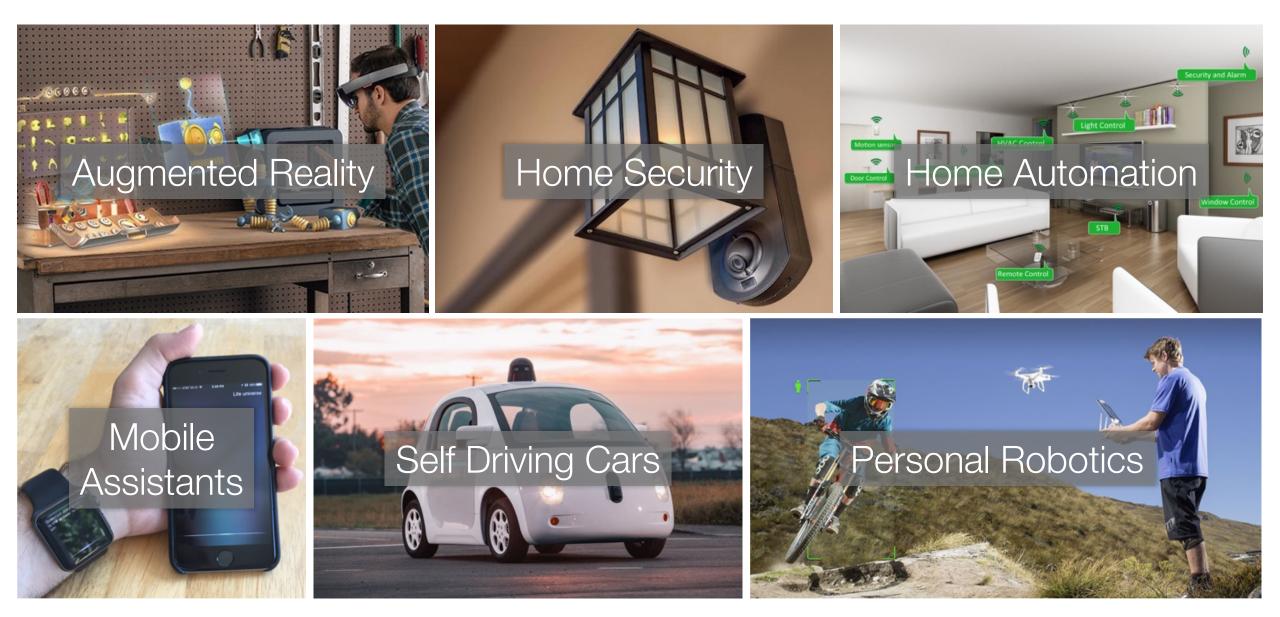
HyperBand





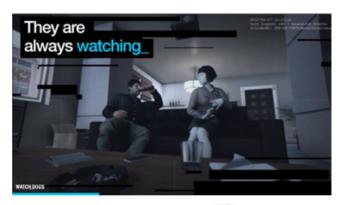
Security

Machine Learning is on the critical path



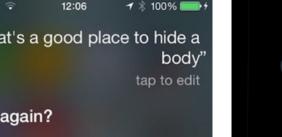
Machine Learning in Sensitive Contexts

AR/VR Systems



Voice Technologies

••••• Virgin 🤤 12:06 7 🙁 100% 🗖 "What's a good place to hide a body' tap to edit What, again?



Medical Imaging

Protect the data, the model, and the query

High-Value Data is Sensitive

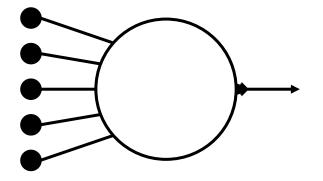
Data

- Medical Info.
 - Home video
 - Finance

Models capture value in data

- Core Asset
- "Contain"

the data



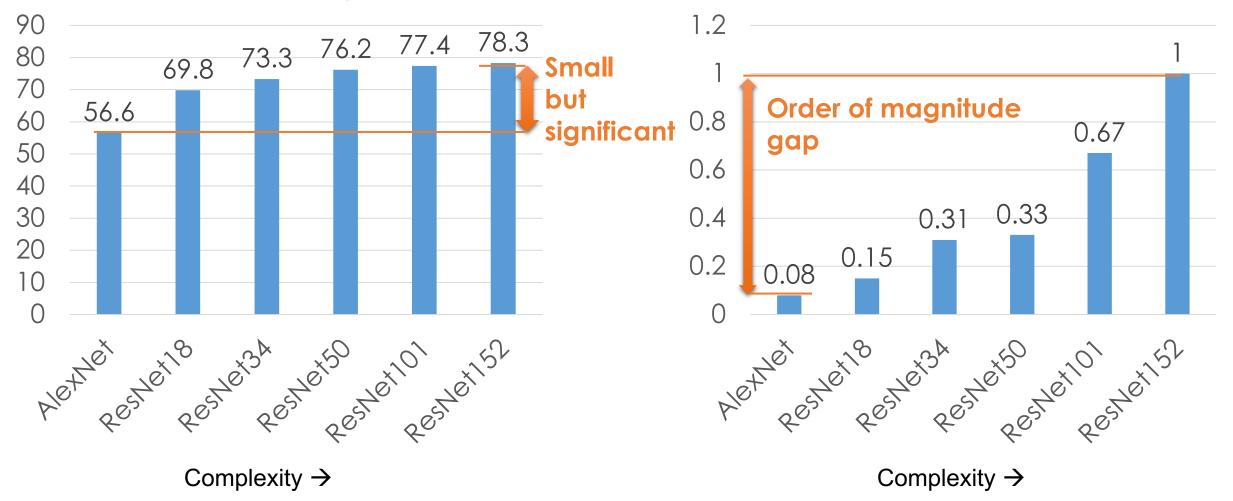
Queries can be as sensitive as the data

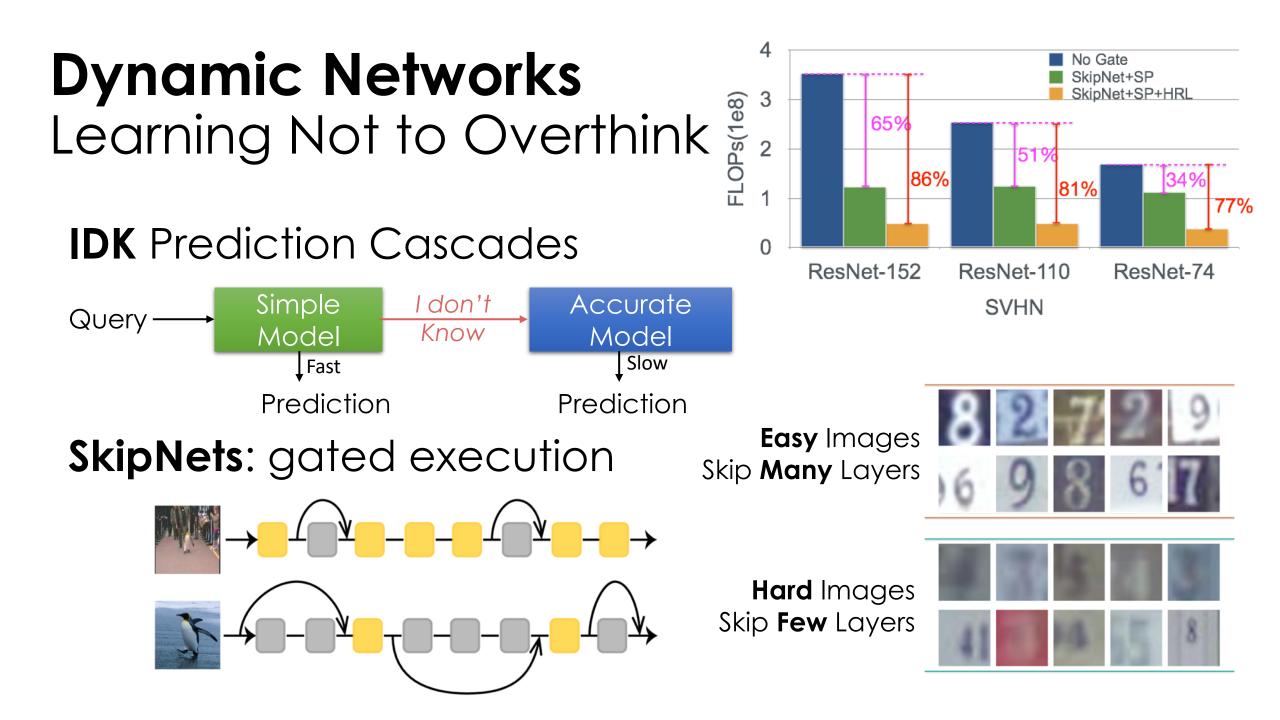
Dynamic Inference

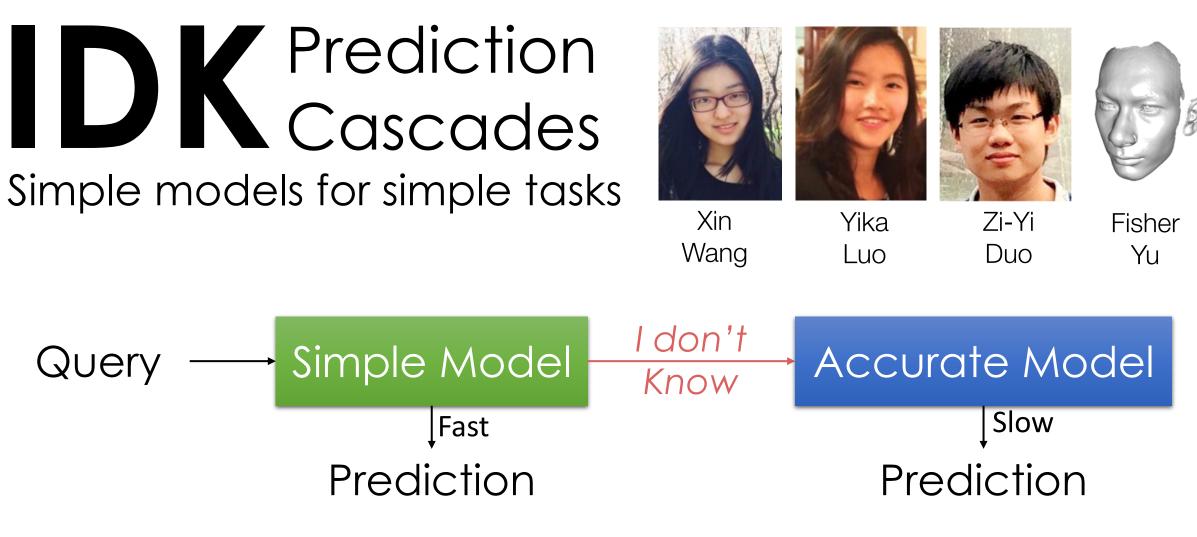
Model costs are increasing much faster than gains in accuracy.

Accuracy

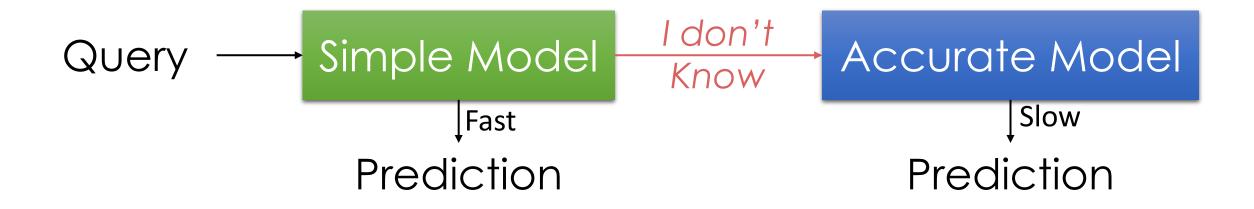
Relative Cost



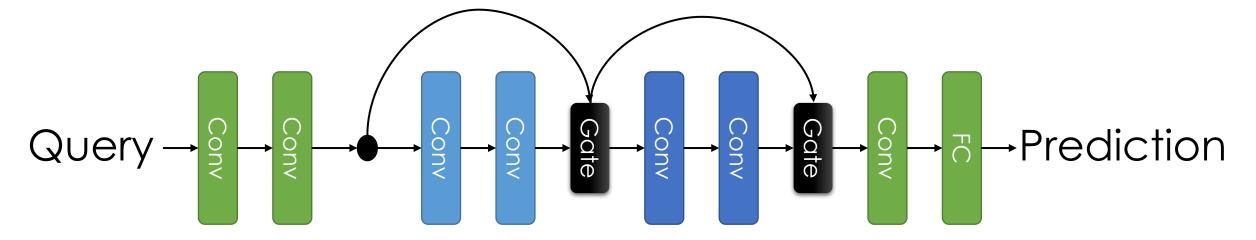


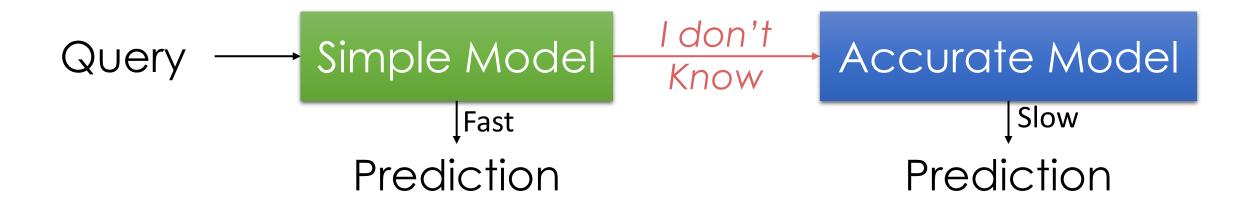


Learn to combine fast (inaccurate) models with slow (accurate) models to maximize accuracy while reducing computational costs.

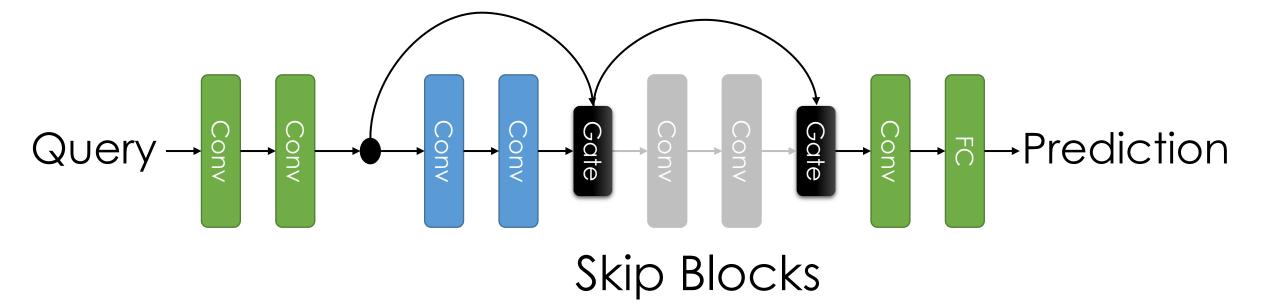


SkipNet: dynamic execution within a model

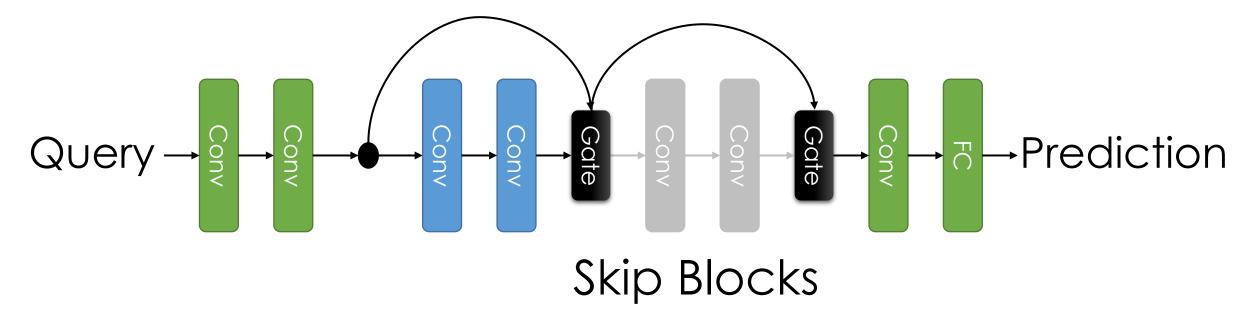




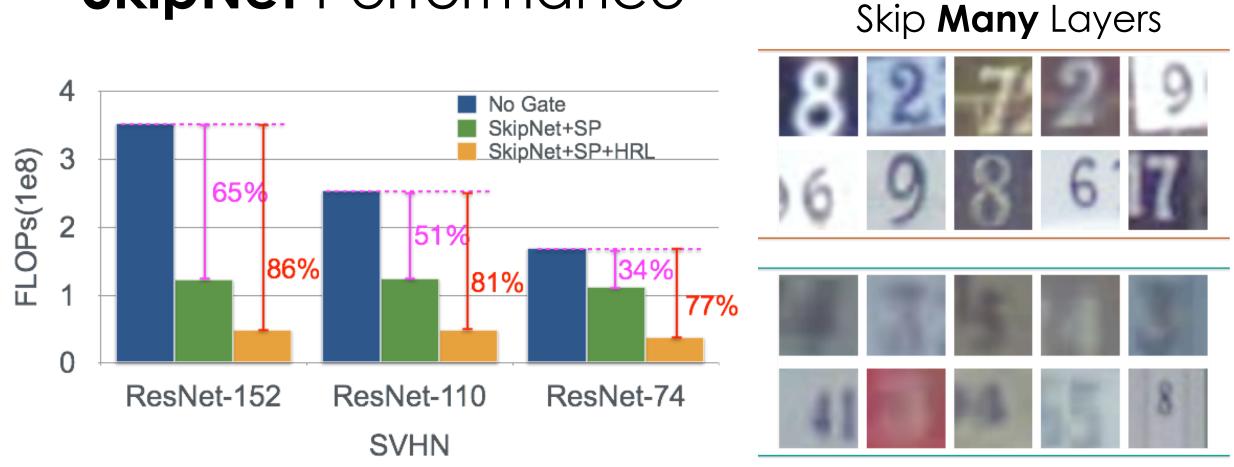
SkipNet: dynamic execution within a model



SkipNet: dynamic execution within a model



Combine reinforcement learning with supervised pre-training to learn a gating policy



Hard Images Skip Few Layers

Easy Images

SkipNet Performance