
Democratizing Data with the
Clover
Transform
Framework

Christopher Hartfield

April 17, 2018

Clover  
has an entirely new approach to
health insurance.

Meet Clover

At Clover we’re reinventing the health insurance model
by integrating technology into every aspect of our
members’ healthcare.

A little about us….

• A startup Medicare Advantage Payer

• Markets in New Jersey, Pennsylvania, Georgia, and
Texas.

• Headquartered in San Francisco

• Venture Backed

!3

How Clover is different from other
Medicare Advantage Companies

Clover Leverages Technology and Data to make
better decisions

Our data and analytics platform uses continuous,
real-time monitoring to create a profile of each of
our members’ health to help prevent hospital
admissions, reduce avoidable spending, and identify
and better manage chronic diseases.

!4

Democratizing
Data

Most healthcare data today is heavily silo-ed

Most health insurance companies build no software at all

• Data is isolated from one another

• Information is only connected by people, not systems

!6

Claim Data

Authorizations/UM

Provider Data

Appeals

Clover Others

Postgres Data
Warehouse

Vendor 1

Vendor
2

Vendor
3

Vendor
4

A Data Lake seems like a good fit

!7

Healthcare Data is often silo-ed.
Making connections between disparate
data sources is Clover’s Mission.

• Many people using many different
kinds of data in many different
transforms.

• Centrally accessible data will make it
easier for people to find data.

• Clover engineers build a lot of pipelines
to bring data into our Data Warehouse
for DataScience and Operations to use.

Democratizing Data

!8

Clover is unique in that we have a large
number of people who manipulate data:

Engineers

Data Scientists

Operations

Analysts

Clover actively trains lots of people how to
use SQL and how to build their own

transforms of data.
source: Bloomberg

Clover has more than 800 Transforms

What is a Transform?

• Manipulations of Data

• Merging, Filtering, De-dupping, etc. of
pieces of data.

!9

Clover does most of these transforms in SQL

• Typically create a new table that has the
changes we’ve made in the SQL

• Some are in Python
Most of our transforms are done in SQL and

create new tables as their output.

What were some of the problems we saw?

Wasn’t easy for Data Scientists, Analysts,
Operations, etc. to add new transforms.

• Almost all of these were creating custom
Postgres tables, but doing so in a variety of
different ways.

• Some pipelines had custom monitoring,
custom transaction handling, etc.

• Not really building pipelines, making a web
instead.

• No best practices for testing.

!10Some pipelines grew to be too big!

What where some of the problems we saw?

To run your tasks you had to understand Airflow and it was difficult to run the tasks
locally.

!11

task

Can run the full pipeline or a single task

task

task

task task

Difficult to run a ‘selection’ of the pipeline

task

task

task task

Difficult to run a task and all it’s dependencies

task

The
Clover
Transform
Framework

The Clover Transform Framework (CTF)

!13

Separating business logic and
infrastructure

• Data Scientists and Operations shouldn’t
have to build monitoring, handle database
transactions, build tasks in Airflow, etc.

• Only Define the upstream dependencies.

• Define the output of your transform.
Thinking in terms of data outputs instead
of just running a task.

• Transform framework is a central place to
add monitoring and other features.

Transform Framework
“Infrastructure”

SQL code / Python code
“Business Logic”

O
u
t
p
u
t

So what does this look like to the end user?

!14

Transforms are defined by Yaml
definitions

• Abstract away creating tables, drop/
swapping, index creation, etc. from the
end user.

• Documentation built in.

• Define the inputs (either in the same
pipeline or an external pipeline)

• No building of Airflow DAGs yourself

• Defines the output

• Owners of the transform!!!

Expanding list of transforms

!15

Different Kinds of Transforms

• create_table_as - Create a table from
a SELECT SQL statement.

• upsert - Insert or update rows from
a SELECT SQL statement.

• sql - Run raw SQL.

• python - Run Python code.

• load - Load data into an output (like load
an S3 file to the Database)

• no_op - Model output but don’t run any
transformation code.

Upsert:

Python Transform:

What this looks like under the hood

!16

What happens when the task actually gets
run:

• We run explain and log the explain query
before running

• Generate the full Create Table As SQL
based on the SELECT query in the
transform.

• Load data to the table

• Build indexes, constraints, etc.

• Analyzes the table at the end

• Take the returned row_count and log it

CLI Included

Create, Run, and Visualize transforms locally. Run them in production in Airflow.

!17

ctf start create_table_as table my_transform.sql ctf ls pipeline

ctf run pipeline -s t1.sql -e t3.sql

runs just these pipelines

The importance of defining all your Inputs and Outputs

A transform must define all it’s inputs from both internal and external pipelines

!18

Must define all the tables or files that you use in
your transform, avoids implicit dependencies.

Can create restrictions on what tables you can
actually use in downstream transforms and
enforce it.

Integration tests are in place that will catch
when the output in pipeline1 changes and
breaks pipeline 2.

pipeline 1

pipeline 2

Testing Infrastructure

!19

Defining the outputs makes
testing robust

• Easily get an empty table of an
upstream transform.

• Helper functions to create test
data.

• One clear and obvious way to
test your transforms.

• Structural tests automatically
run as well.

More Testing Infrastructure

!20

pgmock - https://github.com/CloverHealth/pgmock

pgmock

• Allows for testing individual
subqueries and CTEs within
SQL.

• Great for testing pieces of large
sql queries.

• Open Sourced 😀

https://github.com/CloverHealth/pgmock

Extending the Framework

Monitoring

!22

Monitoring can be defined
in the transform yaml

All metrics (including row counts) are sent to DataDog.
Can use anomaly detection to check for data issues.

Data Bodega

!23

With > 800 Transforms
discoverability becomes a
problem

• Data Bodega gives us a place to
document data products, tables,
and reports.

• Lineage of the data between
different tables.

• Includes ModeReports so we can
see how people are querying the
tables created.

Machine Learning

!24

Expanded CTF to handle our
Machine Learning infrastructure

• Handles the Machine learning
infrastructure in the background.

• Can split datasets into train, test,
and validation allocations.

• Can run most of the scikit learn
algorithms.

• All defined in yaml, no python to
write.

• More accessible to a wide range
of Analysts and Data Scientists.

Questions?

Clover 
is hiring Engineers and
Data Scientists!

Solve one of the country's toughest problems
Join a team that values diversity

Work in a passionate environment

Interested in joining
Clover?

cloverhealth.com/careers

Come see me in Office Hours

Find anyone with a Clover badge

