Me

¥

O CEO @‘\\\‘ Fivetran

<« Applications

Asana Instagram Stripe
Bing Ads Intercom Xero
Braintree Payments iTunes Zendesk
Desk.com Jira Zendesk Chat (Zopim)
DoubleClick Magento /Zuora
Dynamics (365, GP, AX) MailChimp

Eloqua Mandrill

Facebook Ad Insights Marketo

Freshdesk Mixpanel

FrontApp NetSuite SuiteAnalytics

Github Pardot

Google Adwords QuickBooks Online

Google Analytics Recurly

Google Analytics 360 Sailthru

Google Play Salesforce

Help Scout SalesforcelQ

HubSpot SAP Business One

Hybris Shopify

For an updated list of data sources visit fivetran.com/directory

Databases

Amazon Aurora

= Files

Amazon Cloudfront

Amazon RDS Amazon Kinesis Firehose
Azure SQL Database Amazon S3
DynamoDB Azure Blob Storage
Google Cloud SQL CSV

Heroku Dropbox

MariaDB FTP

MongoDB FTPS

MySQL Google Cloud Storage
Oracle DB Google Sheets
PostgreSQL JSON

SQL Server SFTP

@ Events

Segment Webhooks

Snowplow

‘\\\‘ Fivetran

Online Transaction Processing (OLTP)

select =*
from github.commit
where sha = ‘feeec5a81dal13e95a1911b09773f8228f8c0db76"

Is very different from
Online Analytical Processing (OLAP)

select author_email, count()
from github.commit
group by 1

This talk is about OLAP!

Row Store:

commit file added removed changed

XXX 11
XXX 100
XXX 50
yyy > 1

Column Store:

commit file added removed changed
XXX file1.txt 1 10 11

XXX ile2.txt 100 0 100
XXX file3.txt 5 50
yyy file1.txt 1 10 11

select file, sum(changed)
from github.commit
group by 1

C-store: the data warehouse that changed

2005

2011

2013

2015

2016

C-store

BigQuery vl

Redshift

Snowflake

BigQuery v2

everything

C-Store: A Column-oriented DBMS

Mike Stonebraker”, Daniel J. Abadi*, Adam Batkin*, Xuedong Chen', Mitch Cherniack™,
Miguel Ferreira®, Edmond Lau®, Amerson Lin", Sam Madden", Elizabeth O’Neil',
Pat O’NeilT, Alex Rasini, Nga Tran", Stan Zdonik*

"MIT CSAIL “Brandeis University
Cambridge, MA Waltham, MA

Abstract

This paper presents the design of a read-optimized
relational DBMS that contrasts sharply with most
current systems, which are write-optimized.

YUMass Boston *Brown University
Boston, MA Providence, RI

in which periodically a bulk load of new data is
performed, followed by a relatively long period of ad-hoc
queries. Other read-mostly applications include customer
relationship management (CRM) systems, electronic
library card catalogs, and other ad-hoc inquiry systems. In

oninh antvriranmanto a anlinun ofars architantiira in whinh

2005

2011

2013

2015

2016

2011: Early BigQuery

C-store

BigQuery vl

Redshift

Snowflake

BigQuery v2

Not so great at joins

select foo, bar
from large_table
join other_large_table

Nonstandard SQL-like language

select why, did, you,
invent, your, own, sql
from google

2013: AWS Redshift takes off

2005 C-store PA RACC E Lm
2011 BigQuery v1

2013 Redshift 1
2015 Snowflake -

amazon

2016 BigQuery v2 REDSHIFT

2005

2011

2013

2015

2016

Snowflake: store the data in S3!
(similar to BigQuery)

C-store
:‘ Virtual L vitual
Bi 1 i warehouse #1 I i warehouse #2 |
'gQuery v | I — —
! SSD cache : i SSD cache i
Redshift
Snowflake

Cloud storage
BigQuery v2 (e.g. Amazon S3)

2005

2011

2013

2015

2016

2016: BigQuery gets way better

C-store

BigQuery vl

Redshift

Snowflake

BigQuery v2

Fact-to-fact joins work!
Standard SQL!
DELETE and UPDATE!

update mytable
set name = ‘Hello world!’
where id = 1

Benchmark time!

Q N\ amazon
Googguery >4°§ SnOWfIOke - REDSHIFT

What data did we query?

Date Dim

A

ltem

Promotion

Customer _
Demographics

Customer

Store
Store_Sales— Time_Dim
Customer_| | Household_
Address | | Demographics

Income_
Band

What queries did we run?

-— queryl2

SELECT

FROM

WHERE
AND

AND

AND

GROUP BY

ORDER BY

i_item_id ,

i_item_desc ,
i_category ,

i_class ,
i_current_price ,
Sum(ws_ext_sales_price)
Sum(ws_ext_sales_price)*100/Sum(Sum(ws_ext_sales_price))
web_sales ,

item ,

date_dim

ws_item_sk = i_item_sk
i_category IN ('Home',

'Men',

'"Women")
ws_sold_date_sk = d_date_sk
Cast(d_date AS DATE) BETWEEN Cast('2000-05-11' AS DATE)

Cast('2000-06-11"' AS DATE))
item_id ,
item_desc ,
i_category ,
i_class ,
i_current_price
i_category ,

i_class ,
i_item_id ,

i_item_desc ,
revenueratio

i
d.

LIMIT 100;

- querys
WITH ssr
(

AS

SELECT

FROM

WHERE
AND

AND
GROUP BY

SELECT

FROM

WHERE
AND

AND
GROUP BY

SELECT

FROM

s_store_id,
sun(sales_price) AS sales,
sun(profit) AS profit,
Sum(return_amt) AS returnsl,
sun(net_loss) AS profit_loss
(

SELECT ss_store_sk AS store_sk,
ss_sold_date_sk AS date_sk,
ss_ext_sales_price AS sales_price,
ss_net_profit As profit,

0 AS return_ant,
0 AS net_loss

FROM store_sales

UNION ALL

SELECT sr_store_sk AS store_sk,
sr_returned_date_sk AS date_sk,

0 AS sales_price,

0 AS profit,
sr_return_amt AS return_ant,
sr_net_loss AS net_loss
FROM store_returns) salesreturns,
date_dim,
store

date_sk = d_date_sk

Cast(d_date AS DATE) BETWEEN Cast('2002-08-22' AS DATE) AND
Cast('2002-09-05' AS DATE))

store_sk = s_store_sk

s_store_id) , csr AS

cp_catalog_page_id,
sun(sales_price) AS sales,
sun(profit) AS profit,
sum(return_amt) AS returnsl,
sun(net_loss) AS profit_loss
(

SELECT cs_catalog_page_sk AS page_sk,
cs_sold_date_sk AS date_sk,
cs_ext_sales_price AS sales_price,
cs_net_profit AS profit,

0 AS return_ant,
0 AS net_loss

FROM catalog_sales

UNION ALL

SELECT cr_catalog_page_sk AS page_sk,
cr_returned_date_sk AS date_sk,

0 AS sales_price,

0 AS profit,
cr_return_amount AS return_amt,
cr_net_loss AS net_loss

FROM catalog_returns) salesreturns,

date_din,

catalog_page

date_sk = d_date_sk

Cast(d_date AS DATE) BETWEEN cast('2002-08-22' AS date) AND
Cast('2002-09-05' AS DATE))

page_sk = cp_catalog_page_sk

cp_catalog_page_id) , wsr AS

web_site_id,
sun(sales_price) AS sales,
sun(profit) AS profit,
sum(return_amt) AS returnsi,
sun(net_loss) AS profit_loss
(
SELECT ws_web_site_sk
ws_sold_date_sk
ws_ext_sales_price

e nat nenfit

AS wsr_web_site_sk,
AS date_sk,

AS sales_price,
AS nrnfir

Whatis TPC-DS?

@ ® e TPC - Who We Are X

& C' | ® www.tpc.org/information/who/whoweare.asp

TPC"

benchmark standards and disseminating objective, verifiable performance data to the industry... The TPC is a non-profit corporatio

Home
About the TPC Who We Are
Benchmarks
Newsletter
Join the TPC = Full Members
Downloads = Associate Members
Technical Articles : i;‘g‘fjg:j}s’o‘fﬁ“ates
Uit £ = Honor Roll

If you would like to reach a representative from a member company, please contact the TPC Administrator at: Admin@TPC.org

Full Members

0 0 0 0’)
@ction L1011 ot | FUJITSU

Iﬁeu Packard (HITACHI s'é

Enterprise

inspur

HUAWEI

How to run TPC-DS without cheating

DON’'T run the same query twice
DON’'T use dist keys

DON'’T use sort/partition keys
DO apply compression encoding
DO use a realistic (small) scale
DO compare cost

DON’'T use dist keys

select x
from web_sales
join item on ws_item_sk = i_item_sﬂ

e N

WEB_SALES WEB_SALES
ws_sold_date_sk ws_sales_price ws_item_sk ws_sold_date_sk ws_sales_price ws_item_sk
Jan 1 2000 $1 1 Feb 1 2000 $10 2
Jan 2 2000 $1 1 Aug 1 2000 $10 2
Feb 1 2000 $1 1 Jan 1 2001 $10 2
ITEMS ITEMS

i_item_sk i_product_name
2 Pinwheels

i_item_sk i_product_name
1 Rubber Ducks

DON'’T use sort/partition keys

select *

from web_sales

join item on ws_item_sk = i_item_sk

where d_date between '2000-05-11' and '2000-06-11'

WEB_SALES
ws_sold_date_sk ws_sales_price ws_item_sk
2000-01-01 $1 1
2000-01-07 $10 2
2000-05-11 $1 1
2000-05-20 $10 2
2000-05-30 $1 1
2000-06-05 $10 2
2000-06-11 $10 2
2000-12-01 $1 1
2000-12-31 $10 2

Which data warehouse is the fastest?
Histogram of execution times for 99 TPC-DS queries (seconds, log scale)

Median=5.8s

25
20
15
10

5

O —

Snowflake

025 05 1 2 4 8 16 32 64 128 256

Median=7.7s
25

20
15
10

5
0 E=

512

Redshift

0.25 0.5 1 2 4 8 16 32 64 128 256
Median=5.3s

25
20
15
10
5
0

512

BigQuery

025 05 1 2 4 8 16 32 64 128 256

512

‘\\\‘ Fivetran

github.com/fivetran/benchmark

Which data warehouse is the cheapest?
Histogram of cost for 99 TPC-DS queries (cents, log scale)

20
15
10

20
15
10

(&)}

20
15
10

)

0.125

0.125

0.125

Median = $0.017

0.25

0.5

2

4 8 16
Median = $0.023

0.25

0.25

0.5

0.5

4 8 16
ian = $0.041

Snowflake

32

32

64

128 256

Redshift

64

128 256

BigQuery

32

64

128 256

‘\\\‘ Fivetran

github.com/fivetran/benchmark

How does this compare to
other benchmarks?

Amazon’s Redshift vs BigQuery benchmark

Amazon Redshift vs. BigQuery (TPC-H based Benchmark, All 22 Queries, 10TB Dataset)

Time Elapsedin Seconds
1,000 2,000 3,000 4,000 5,000 6,000

M BigQuery
B Amazon Redshift - 8xDC1.8XL

I

10

11

12

Query #

13

14

15

16

17

18

19

Periscope’s Redshift vs Snowflake vs BQ

Snowflake vs. Redshift: Computation per Dollar [Higher is Better]

0.3

o
()

1/ ($ x seconds)

o
e

Query

redshift, 2, dc1-
large

@ redshift, 4, dc1-
large

@ redshift, 8, dc1-
large

@ redshift, 2, dc1-
8xlarge

9 snowflake, xsmall,
standard

@ snowflake, small,
standard

@ snowflake,

Mark Litwintshik’s 1.1 billion taxi-rides

Query 1 Query 2 Query 3 Query 4 Setup

0.005
0.009
0.021
0.027
0.028
0.034
0.036
0.051
0.762
1.034
1.56
2

4
6.41
8.1
10.19
11
14.389
34.48
35

43
152
264
1103

0.011
0.027
0.053
0.083
0.2
0.061
0.131
0.146
2.472
3.058
1.25
2

4
6.19
18.18

0.103
0.287
0.165
0.163
0.237
0.178
0.439
0.047
4131
5.354
2.25

1

10
6.09
n/a

0.188 BrytlytDB 2.1 & 5-node IBM Minsky cluster
0.428 BrytlytDB 2.0 & 2-node p2.16xlarge cluster
0.51 MapD & 8 Nvidia Pascal Titan Xs
0.891 MapD & 8 Nvidia Tesla K80s
0.578 MapD & 4-node g2.8xlarge cluster
0.498 MapD & 2-node p2.8xlarge cluster
0.964 MapD & 4 Nvidia Titan Xs
0.794 kdb+/q & 4 Intel Xeon Phi 7210 CPUs
6.041 BrytlytDB 1.0 & 2-node p2.16xlarge cluster
12.748 ClickHouse, Intel Core i5 4670K
2.97 Redshift, 6-node ds2.8xlarge cluster
3 BigQuery
21 Presto, 50-node n1-standard-4 cluster
6.63 Amazon Athena
n/a Elasticsearch (heavily tuned)

8.134 19.624 85.942 Spark 2.1, 11 x m3.xlarge cluster w/ HDFS

10
32.148
63.3
39

45

175
313
1198

21
33.448
n/a

64

27

235
620
2278

31 Presto, 10-node n1-standard-4 cluster
67.312 Vertica, Intel Core i5 4670K
n/a Elasticsearch (lightly tuned)
81 Presto, 5-node m3.xlarge cluster w/ HDFS
44 Presto, 50-node m3.xlarge cluster w/ S3
368 PostgreSQL 9.5 & cstore_fdw
961 Spark 1.6, 5-node m3.xlarge cluster w/ S3
6446 Spark 2.2, 3-node Raspberry Pi cluster

* 20 points by georgewfraser 2 hours ago [-]

This is not a good benchmark. There are two problems:

1. It's a simple GROUP BY on a single table. You're basically just measuring the scan speed. Real
queries are dominated by shuffles and the probe side of joins; these aren’t even present in this
benchmark.

2. He runs the query repeatedly and takes the fastest time. This is far too cache-friendly. In this
example, the intermediate stages of the query or even the result are probably just sitting in
memory on the nodes after the first couple runs.

If you want to measure the performance of a data warehouse, you need to use more complex
queries and not run the exact same query repeatedly.

edit: Coincidentally, I am giving a talk about data warehouse benchmarking TONIGHT in NYC. If
you're in NY and interested in this subject, please come! https://www.meetup.com/mysalnyc/

marklit 2 hours ago [-]
The benchmarks are aimed at OLAP not OLTP workloads.
If I had a large query set to run on each vendor I'd be more likely to hit compatibility

issues which could mean fewer benchmarks going out. As it is I spend a lot of time getting
hardware and software vendors together for these benchmarks.

If caches were being hit I'd expect a lot more DBs hitting single millisecond times in my
benchmarks but as far as I can see, there is a clear delta between the various setups I've
tested:

http://tech.marksblogg.com/benchmarks.html

What really matters:
ease of use

amazon
REDSHIFT

Google BigQuery

<« Applications

Asana Instagram Stripe
Bing Ads Intercom Xero
Braintree Payments iTunes Zendesk
Desk.com Jira Zendesk Chat (Zopim)
DoubleClick Magento /Zuora
Dynamics (365, GP, AX) MailChimp

Eloqua Mandrill

Facebook Ad Insights Marketo

Freshdesk Mixpanel

FrontApp NetSuite SuiteAnalytics

Github Pardot

Google Adwords QuickBooks Online

Google Analytics Recurly

Google Analytics 360 Sailthru

Google Play Salesforce

Help Scout SalesforcelQ

HubSpot SAP Business One

Hybris Shopify

For an updated list of data sources visit fivetran.com/directory

Databases

Amazon Aurora

= Files

Amazon Cloudfront

Amazon RDS Amazon Kinesis Firehose
Azure SQL Database Amazon S3
DynamoDB Azure Blob Storage
Google Cloud SQL CSV

Heroku Dropbox

MariaDB FTP

MongoDB FTPS

MySQL Google Cloud Storage
Oracle DB Google Sheets
PostgreSQL JSON

SQL Server SFTP

@ Events

Segment Webhooks

Snowplow

‘\\\‘ Fivetran

