How have Data Science Skills Evolved? A case study using embeddings

Maryam Jahanshahi Ph.D.

Research Scientist
TapRecruit.co

TapRecruit uses NLP to understand career content

Converting unstructured documents into structured data

Smart Editor for JDs

Data-driven suggestions on both the content and language use in job descriptions.

Pipeline Health Monitoring

Analytics dashboards to help diagnose quality and diversity issues in talent pipelines.

Salary Estimation

Data-driven salary estimates based on a job's requirements rather than just title and location.

This job scores lower than 95% of Junior Accounting jobs in Los Angeles, CA

- Add more "you" statements
- Perks included
- Equal opportunity statement is included

Gendered Neutral

Senior Finance Analyst

TapRecruit - Los Angeles

\$98,600 \$65,200

TapRecruit is looking for a smart, detail-oriented person to serve as a senior financial analyst. This person will be responsible for supporting the company's FP&A requirements. Responsibilities will include working on TapRecruit Entertainment Group's FP&A model, supporting analysis for long term plantage antique tracking key business

operational metrics and producing monthly financial/operation role will require strong organizational skills to help manage the senior managers across the department and evaluate/implem management. This is a dynamic role that serves the finance de of Finance and will routinely interface with TapRecruit's top ma

This is an ideal position for an individual who has gained stron

Language that itional FP&A needs, this emphasizes an uide discussions with "intense" or "confusing" ojects for top environment is known to deter qualified report to a Senior Manager candidates. ***** Delete

\$76,300

investment bank or accounting firm and now seeks to apply those skills to a fast-growing entrepreneurial company. Strong quantitative and excel financial modeling skills are a must. The ideal candidate must be comfortable in a dynamic start-up environment, will bring energy and passion to everything he/she does, and will not be afraid to roll up his/her sleeves to tackle challenging analytical assignments.

This job is full-time, based in Los Angeles. We offer competitive compensation and stock option program.

Language matters in job descriptions

Same title, Different job

- Required Experience
- Required Responsibility
- Preferred Skill
- Required Education

Language matters in job descriptions

Same title, Different job

Same job

Finance Manager **Kraft Foods**

Junior (3 Years)

No Managerial Experience

Different title,

Performance **Marketing Manager PocketGems**

Mid-Level

Quantitative Focus

iBanking Expertise

Data Analysis Tools (SQL)

Consulting Experience Preferred

MBA Preferred

Finance Manager Roche

Senior (6-8 Years)

Division Level Controller

Strategic Finance Role

MBA / CPA

Same Title

- Required Experience
- Required Responsibility
- Preferred Skill
- Required Education

Senior Analyst, **Customer Strategy**

The Gap

Mid-Level

Quantitative Focus

Finance Expertise

Relational Database Experience

External Consulting Experience Preferred

BA in Accounting, Finance, MBA Preferred

- **Required Experience**
- **Required Skills**
- **Required Experience**
- **Required Skills**
- **Preferred Experience**
- **Preferred Education**

How have data science skills changed over time?

Strategies to identify changes within datasets

Manual Feature Extraction:

Require *a priori* selection of key attributes, therefore difficult to discover new attributes

Strategies to identify changes within datasets

Manual Feature Extraction:

Require *a priori* selection of key attributes, therefore difficult to discover new attributes

Dynamic Topic Models:

Uses a bag of words approach, and require experimentation with topic number.

Statistical modeling through software (e.g. SPSS) or programming language (e.g. **Python**)

Context

Word

Experience in Python, Java or other object-oriented programming languages

Context Word Context

Proficiency programming in **Python**, Java or C++.

Context Word Context

Statistical modeling through software (e.g. SPSS) or programming language (e.g. **Python**)

Context

Word

Experience in Python, Java or other object-oriented programming languages

Context Word Context

Proficiency programming in **Python**, Java or C++.

Context Word Context

Statistical modeling through software (e.g. SPSS) or programming language (e.g. **Python**)

Context

Word

Experience in Python, Java or other object-oriented programming languages

Context Word Context

Proficiency programming in **Python**, Java or C++.

Context Word Context

Statistical modeling through software (e.g. SPSS) or programming language (e.g. **Python**)

Context

Word

Experience in Python, Java or other object-oriented programming languages

Context Word Context

Proficiency programming in **Python**, Java or C++.

Context Word Context

Embeddings capture entity relationships

Dimensionality enables comparison between word pairs along many axes

Hierarchies

Embeddings capture entity relationships

Dimensionality enables comparison between word pairs along many axes

Hierarchies

Comparatives and Superlatives

Embeddings capture entity relationships

Dimensionality enables comparison between word pairs along many axes

Hierarchies

Comparatives and Superlatives

Woman :: Queen as Man :: ?

Pretrained embeddings facilitate fast prototyping

Corpus Generation

Corpus Processing

Language Model Generation

Language Model Tuning

Final Application

Pretrained embeddings facilitate fast prototyping

Corpus Generation

Corpus Processing

Language Model Generation

Language Model Tuning

Final Application

Corpus	Twitter	Common Crawl	GoogleNews	Wikipedia
Tokens	27 B	42-840 B	100 B	6 B
Vocabulary Size	1.2 M	1.9-2.2 M	3 M	400 k
Algorithm	GLoVE	GLoVE	word2vec	GLoVE
Vector Length	25 - 200 d	300 d	300 d	50 - 300 d

Problems with pretrained embedding models

Casing	Abbreviations vs Words e.g. IT vs it		
Out of Vocabulary Words	Domain Specific Words & Acronyms		
Polysemy	Words with multiple meanings e.g. drive (a car) vs drive (results) e.g. Chef (the job) vs Chef (the language)		
Multi-word Expressions	Phrases that have new meanings e.g. Front-end vs front + end		

Tools for developing custom language models

Modularized for different data and modeling requirements

CoreNLP

Tokenization, POS tagging, Sentence Segmentation, Dependency Parsing

Language Modeling

Different word embedding models (GLoVE, word2vec, fastText)

Hyperparameter tuning on final model outputs

Window sizes capture semantic similarity vs semantic relatedness

Small Window Size

Capture Semantic similarity,
Substitutes and Word-level differences

Hyperparameter tuning on final model outputs

Window sizes capture semantic similarity vs semantic relatedness

Small Window Size

Capture Semantic similarity,
Substitutes and Word-level differences

Large Window Size

Capture Semantic relatedness, Alternatives and Domain-level differences

Identified equal opportunity and perks language

Identified equal opportunity and perks language


```
marital_status age
vetenan_status
vetenan_status
vetenan_status
genaetiquehterigin
race_color
employmentegitaout

equal_opp即即吸
```


Identified equal opportunity and perks language

Identified 'soft' skills and language around experience

Identified 'soft' skills and language around experience

I've got 300 dimensions... but time ain't one

Two approaches to connect embeddings

Kim, Chiu, Kaneki, Hedge and Petrov, <u>arXiv: 1405:3515</u>. Kulkarni, Al-Rfou, Perozzi and Skiena, <u>arXiv: 1411:3315</u>. Balmer and Mandt, <u>arXiv: 1702:08359</u>
Yao, Sun, Ding, Rao and Xiong, <u>arXiv: 1703:00607</u>
Rudolph and Blei, <u>arXiv: 1703:08052</u>

Tap Recruit.co

Two approaches to connect embeddings

Kim, Chiu, Kaneki, Hedge and Petrov, <u>arXiv: 1405:3515</u>. Kulkarni, Al-Rfou, Perozzi and Skiena, <u>arXiv: 1411:3315</u>.

Balmer and Mandt, <u>arXiv: 1702:08359</u>
Yao, Sun, Ding, Rao and Xiong, <u>arXiv: 1703:00607</u>
Rudolph and Blei, <u>arXiv: 1703:08052</u>

Tap Recruit.co

Two approaches to connect embeddings

Kim, Chiu, Kaneki, Hedge and Petrov, <u>arXiv: 1405:3515</u>. Kulkarni, Al-Rfou, Perozzi and Skiena, <u>arXiv: 1411:3315</u>.

Data efficient: Treats each time slice as a sequential latent variable, enabling time slices with sparse data.

Does not require alignment: Treating time slice as a variable ensures embeddings are connected across slices.

Balmer and Mandt, <u>arXiv: 1702:08359</u>
Yao, Sun, Ding, Rao and Xiong, <u>arXiv: 1703:00607</u>
Rudolph and Blei, <u>arXiv: 1703:08052</u>

Table Rudolph and Blei, <u>arXiv: 1703:08052</u>

Dynamic embeddings models

Rudolph and Blei, arXiv: 1703:08052

Absolute drift

Identifies top words whose usage changes over time course

words with largest drift (Senate)					
IRAQ	3.09	coin	2.39		
tax cuts	2.84	social security	2.38		
health care	2.62	FINE	2.38		
energy	2.55	signal	2.38		
medicare	2.55	program	2.36		
DISCIPLINE	2.44	moves	2.35		
text	2.41	credit	2.34		
VALUES	2.40	UNEMPLOYMENT	2.34		

Embedding neighborhoods

Extract semantic changes by nearest neighbors of drifting words

UNEMPLOYMENT					
1858	1940	2000			
unemployment	unemployment	unemployment			
unemployed	unemployed	jobless			
depression	depression	rate			
acute	alleviating	depression			
deplorable	destitution	forecasts			
alleviating	acute	crate			
destitution	reemployment	upward			
urban	deplorable	lag			
employment	employment	economists			
distressing	distress	predict			

Experiments with Dynamic Bernoulli Embeddings

	Small Corpus	Large Corpus
Job Types	All	All
Time Slices	3 (2016-2018)	3 (2016-2018)
Number of Documents	50 k	500 k
Vocabulary Size	10 k	10 k
Data Preprocessing	Basic	Basic
Embedding Training	100 dimensions, 10 epochs	100 dimensions, 10 epochs

Small corpus identified gains and losses

Demand for PhDs and MBAs is Falling

PhDs in All Jobs

PhDs in DS Jobs

-23% -30%

MBAs in All Jobs

-35%

Blue boxes indicate phrases identified from top drifting words analysis. Grey boxes indicate 'control' skills.

Small corpus identified gains and losses

Demand for PhDs and MBAs is Falling

Data Science skills showing significant shifts

PhDs in All Jobs

PhDs in DS Jobs

-23% -30%

MBAs in All Jobs

-35%

Tableau +20%

PowerBI +100%

Blue boxes indicate phrases identified from top drifting words analysis. Grey boxes indicate 'control' skills.

Small corpus identified gains and losses

Demand for PhDs and MBAs is Falling

PhDs in DS Jobs

-23% -30%

MBAs in All Jobs

PhDs in All Jobs

-35%

Data Science skills showing significant shifts

Blue boxes indicate phrases identified from top drifting words analysis. Grey boxes indicate 'control' skills.

Small corpus identified gains and losses

Demand for PhDs and MBAs is Falling

PhDs in All Jobs

-23%

PhDs in DS Jobs

-30%

MBAs in All Jobs

-35%

Data Science skills showing significant shifts

Blue boxes indicate phrases identified from top drifting words analysis. Grey boxes indicate 'control' skills.

Dynamic Bernoulli embeddings

Large corpus identified role-type dependent shifts in requirements

No change to SQL demand

Dynamic Bernoulli embeddings

Large corpus identified role-type dependent shifts in requirements

No change to SQL demand

SQL requirement increases in specific functions

regression:: Generalized Linear Models as word2vec:: Exponential Family Embeddings

Conditional probabilistic models generalize the spirit of embeddings to other data types

Proficiency

Context programming

Python

Datapoint Java

Context C++

Bernoulli Embeddings

Binary Data
Presence of word, given surrounding words

Conditional probabilistic models generalize the spirit of embeddings to other data types

Proficiency

Context programming

Python

Datapoint Java

Context C++

Bernoulli Embeddings

Binary Data
Presence of word, given
surrounding words

Mini Bagels

Context Cream cheese

Milk

Datapoint Coffee

Context Orange Juice

Poisson Embeddings

Count or Ordinal Data
Number of item purchased,
given number of other items
purchased in the same cart.

Conditional probabilistic models generalize the spirit of embeddings to other data types

Proficiency

Context programming

Python

Datapoint Java

Context C++

Bernoulli Embeddings

Binary Data
Presence of word, given surrounding words

Mini Bagels

Context Cream cheese

Milk

Datapoint Coffee

Context Orange Juice

Poisson Embeddings

Count or Ordinal Data Number of item purchased, given number of other items purchased in the same cart. JFK-CDG

Context LGA-DCA

JFK-DFW

Datapoint LAX-JFK

Context LAX-LGA

Gaussian Embeddings

Continuous Data Weight of an edge, given other edges on the same node.

Poisson embeddings capture item similarities from shopper behavior

Mini Bagels

Context Cream cheese

Milk

Datapoint Coffee

Context Orange Juice

Poisson Embeddings

Count or Ordinal Data

Poisson embeddings capture item similarities from shopper behavior

Mini Bagels

Context Cream cheese

Milk

Datapoint Coffee

Context Orange Juice

Poisson Embeddings

Count or Ordinal Data

262

223

162

137

293

69

176

241

Poisson embeddings capture item similarities from shopper behavior

Mini Bagels

Context Cream cheese

Milk

Datapoint Coffee

Context Orange Juice

Poisson Embeddings

Count or Ordinal Data

262

223

162

137

293

69

176

241

Maruchan chicken ramen

Maruchan creamy chicken ramen

Maruchan oriental flavor ramen

Maruchan roast chicken ramen

Yoplait strawberry yogurt

Yoplait apricot mango yogurt

Yoplait strawberry orange smoothie

Yoplait strawberry banana yogurt

Inner product of vectors identify substitutes and alternatives

High Inner Product Combinations:

Yield products that are frequently bought together

Old Dutch potato chips & Budweiser Lager beer

Lays potato chips & DiGiorno frozen pizza

Inner product of vectors identify substitutes and alternatives

High Inner Product Combinations:

Yield products that are frequently bought together

Old Dutch potato chips & Budweiser Lager beer

Lays potato chips & DiGiorno frozen pizza

Low Inner Product Combinations:

Yield products that are rarely bought together

General Mills cinnamon toast & Tide Plus detergent

Beef Swanson Broth soup & Campbell Soup cans

How have data science skills changed over time?

- Flavors of static word embeddings: The Corpus Issue
- Considerations for developing custom embedding models
- Flavors of dynamic models: Dynamic Bernoulli embeddings
- Other members of the Exponential Family of Embeddings

Thank you DataEngConf!

Maryam Jahanshahi Ph.D.

Research Scientist

57 @mjahanshahi

in maryam-j

