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The typical Machine Learning pipeline
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Multiply it by M*N (M = customers; N = use cases)
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Problems with enterprise data

Not enough data scientists to hand tune each model

e We don’t know the specific business use case and data
e Each step in the pipeline needs to be automated

Messy data

e Nobody likes data entry - missing fields, typos
e Automated business practices can lead to patterns in the data
e (Custom fields get added, removed or deprecated at any time

No historical data

e Impossible to keep track of value changes in every field
e Cold start problem




What is hindsight bias?
Label/data leakage



Back to the future
Knowing things you shouldn’t know
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A classic example
Predicting survival on the Titanic

First Class -

Female -

Second Class

Male

Third Class 0.26

Not Survived Surv'ived .
Not Survived Survived



A classic example
Predicting survival on the Titanic

Body Number 0
No Body Numer 0.42
Not Survived Sur\/ived

Boat Number -

No Boat Numer

Not Survived

Survived
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A classic example
Predicting survival on the Titanic

Gender

Passenger Class

Prediction Time @

Boat Number
Body Number




A modern example

Predicting lead conversion in Salesforce
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Why does it even matter?
Good for betting, but not machine learning




Effect on model performance
Traditional evaluation

Model relies on information not available at scoring time

Model performance decreases for actual prediction
Traditional evaluation pipeline is not sufficient
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Effect on model performance soesfore
Time-based evaluation

@ Positive example O Unlabeled example

Need to treat each record separately €5 Negative example > Update event

e Score and evaluate at different times
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Effect on model performance
Time based evaluation
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How do we solve it?

Solutions, and more problems



A simple start

What are some problems with this data?

|d Name Address | Phone | ClosedBy | ReasonLost | Amount Converted
342 32212 - $41k True

221 - - - False

098 86721 Unknown - False

462 32212 - $23k True

140 - Competitor | - False

salesforce
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A simple start

What are some problems with this data?

e [ReasonLost filled out means no conversion
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A simple start

What are some problems with this data?

e [ReasonLost filled out means no conversion
e Amount filled out means conversion

e C(ClosedBy filled out, more likely to have conversion

|d Name Address | Phone | ClosedBy | ReasonLost | Amount Converted
342 32212 - $41k True

221 - - - False

098 86721 Unknown - False

462 32212 - $23k True

140 - Competitor | - False
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Catching features that are foo good

Raw Data

Features

one hot encoding
extracting e-mail domain
country code
IsNuli

Correlation
with label

Pearson
Cramer’s V
Exclude child features
Threshold based
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Does not solve everything

Data behaves in mysterious ways

|d Name Address Phone Expected Revenue Converted
342 0

221 0 False

098 0

462 15,000 True

140 12,000 True
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Does not solve everything

Data behaves in mysterious ways

e Default value is not always null
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Does not solve everything

Data behaves in mysterious ways

e Default value is not always null
e A value > 0 indicates conversion

e Auto-bucketizing can catch these cases
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Does not solve everything

Data behaves in mysterious ways

Default value is not always null
A value > 0 indicates conversion

Auto-bucketizing through decision tree can catch these cases

|d Name Address | Phone | Expected Revenue Bucketized Converted
342 0 [1, 0, 0]

221 0 [1, 0, 0] False

098 0 [1,0,0]

462 15,000 [0, 1, 0] True

140 12,000 [0, 1, O] True

salesforce



Change over time

So far, we have only talked about data
at the same point in time

e But training and scoring data are
rarely produced at the same time

e Training data is historical,
scoring data is more current

Fill Rate Percentage
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Bulk uploads

Biased towards

positive labels
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Criteria to exclude

Low overall fill ratio
e No point in keeping a feature that is mostly null

Big discrepancy between training and scoring
e Convert to probability distribution and compare with Jensen-Shannon Divergence

Skewed dates and ratios
e Be careful about including date features that might be inherently biased




AutoML vs Hand Tuning ssfrc

Leakers removed by

Leak db
€aKers removead by data scientist hand tuning: 42

AutoML: 73
- mkto_si__Last_Interesting_Moment__c
Description OtherPostalCode
et4ae5__Mobile_Country Code__c Title
mkto2__ Acquisition_Program_Id__c
JigsawContactld ReportsTold OtherCity
pi__last_activity__c MailingLongitude
pi__first_activity ¢ AssistantPhone HomePhone
Fax OtherStreet Partner_Last Name__c
mkto_si__Last_Interesting_Moment_Desc__c
mkto2__ Acquisition_Program__c Jigsaw
Company__c OtherLongitude AssistantName
Salutation OtherLatitude Purchase_Motivation__c
Secondary_Email__c TimetoPurchase__c
mkto_si__Last_Interesting_Moment_Source__c
MailingGeocodeAccuracy MailingLatitude
pi__created_date__c CommentCapture__c
Preferred_Communication_Method__ ¢
TopPriorityValue__c
mkto_si__Last_Interesting_Moment_Type__ ¢
OtherState TopPriorityProcess__c OtherCountry
MasterRecordld OtherGeocodeAccuracy
TopPriorityProduct__c

emailbounceddate
lastcurequestdate lastcuupdatedate
lastreferenceddate lastvieweddate
mkto2__acquisition_date__c
mkto_si__hidedate__cpi_ grade_ c
pi__notes__c pi__utm_content__ ¢
account_link_easy_closets__c
csat_survey _completed_date_ ¢
csat_survey_net_promoter_score__c
csat_survey_results_link__c birthdate
mkto_si__last_interesting_moment_date__c
pi__campaign__c pi__comments__c
pi__first_search_term__c
pi__first_search_type_c
pi__first_touch_url__c pi__score_ ¢
pi__url__c pi__utm_campaign__c
pi__utm_medium__c pi__utm_source__c
historical_lead_score__c pi__utm_term__c
first_activity_timestamp__c
predicted_likelihood_to_purchase_2_c

best_time_to_call_date_
c total_lead_score__c¢
csat_customer_service_s
urvey_disallowed__c
referral_credit_applied__c
referral_days_til_purchas
e_c
predicted_likelihood_to_p
urchase__c createdbyid
createddate
lastactivitydate
lastmodifieddate
last_activity_date_ ¢
systemmodstamp




Final thoughts and summary



Solve for all customers, not just one

Thresholds are tricky to choose
e What is a good feature and what is a bad leaker?

Easy to optimize for one model, but not for thousands
e Choosing a threshold that perfects one model, but makes hundreds worse is not good!

“‘Smart” decisions based on data shape preferred
e for example, auto-bucketizing - let the algorithm figure out a smart way

Lots of experimentation
e to learn heuristics that can be translated into algorithms



Key Takeaways

Enterprise data is very messy

e Often leads to hindsight bias/label leakage
e “Too good to be true” is a real problem

Standard Machine Learning pipeline is not sufficient

e Time based evaluation is needed to know how your models are doing
e You cannot simply optimize for best model at training time

Novel approaches needed to detect and remove leakage

e both on raw and transformed data
e choosing the right threshold to satisfy all customers
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TransmogrifAl

All the methods discussed here are part of our open-source library, TransmogrifAl

e Built on top of SparkML
e https://qithub.com/salesforce/TransmogrifAl

We are hiring more data scientists!


https://github.com/salesforce/TransmogrifAI




