
When Testing in Production
is a Good Idea

Dan Robinson
CTO, Heap

•Joined as Heap's first hire in July, 2013.

•Previously an engineer at Palantir.

•Studied Math & CS at Stanford.

whoami

1. What is Heap?

2. Testing in prod and why it works so well for us.

3. Some thoughts on how to generalize this approach.

4. Same concept applied to testing our client side JS.

What we'll talk about:

What is Heap?

playButton.addEventListener('click', function() {
 Analytics.track('Watched Video', {customer: 'opploans'});
});

1. Capturing 10x to 100x as much data as a traditional analytics
tool. Will never care about 95% of it.

2. Enormous variability in usage. Every query is unique.

3. Fundamental "indirection" in the dataset.

Challenges

How do you make this fast?

1. Need to make large, system-wide improvements.

2. Need to do so on a predictable cadence.

3. Low tolerance for breaking the product.

Ground Rules

Case Study: Rolling out ZFS

• We wanted filesystem-level compression.

• We built a benchmarking suite, evaluated our product
extensively.

• We decided to roll it out.

ZFS Backstory

• Weeks into the rollout, we ran into serious problems.

• We couldn’t ingest incoming data fast enough.

• Resolving the issues took weeks!

This was the most thoroughly vetted

analysis-layer change we had ever made.

Our benchmarking had holes that are clear in retrospect.

• We were testing with disks that were less full than in prod.

• Our benchmark was a scaled-down test on a smaller machine,
but the scaled up workload on a larger machine didn’t perform
the same way.

What went wrong?

Any way your testing differs from prod is surface

area for surprises in prod.

Instead of starting from a synthetic benchmark and making

it increasingly sophisticated, why not build a way to test

your idea in prod, without the risk?

• Our query cluster has a master and N workers. (N = 70 right now.)

• We built a system that picks a worker and creates a “shadow” copy of it,
with our desired change.

• We duplicate the dataset exactly on the shadow machine.

• We mirror all reads and writes.

• This machine is in prod, except that we ignore reads from it.

"Shadow Prod"

• Evaluating a change takes 2-4 weeks of wall time, most of which
is passive.

• We’re improving query perf by 20% to 40% per quarter, reliably.

• We're up 11x in the last 18 months.

• We have a two person database team.

"Shadow Prod" Results

System Level Example Result

Hardware i3.16xlarge vs i3.metal 41% p95 improvement

OS Config Clock Source xen vs tsc 30% p95 improvement

Filesystem Config ZFS Recordsize 8kb vs 64kb 2.4x reduction in disk footprint

DB Schema
Partitioning event table by top-level

type
22% p95 improvement

Indexing Strategy Including user IDs in event indexes 20% p95 improvement

• Easy to be confident that a change is safe for prod, because
it's already in prod.

• Bonus: this system tests the rollout process for free, because
you use it to create shadow nodes.

"Shadow Prod" Results

Protips

Protip: use A/A tests to expose confounding variables.

Protip: the ability to align specific atoms in your

experiment between prod and shadow prod is key.

Protip: build a sanity checker to make sure the

improvements you're getting make sense.

Unforeseen IssuesForeseeable Issues

Integration
Bugs

Type
Errors

Business
Logic

Environmental
Variability

Entropy

Unforeseen IssuesForeseeable Issues

Performance

Integration
Bugs

Performance
Type

Errors
Business

Logic

Types

Environmental
Variability

Static
Analysis

Unit Tests Integration
Tests

Benchmarking Monitoring

Entropy

Chaos Eng

System Tests

Unforeseen Issues

Local Tests

Foreseeable Issues

Load Testing

• The problem of query perf at Heap has enormous variability.

• Trying to predict all this variability is very difficult, let alone
reproducing it in a benchmark.

• Sequences of queries typically use the same events repeatedly.

• Different shapes of dataset for different customers.

• People generally use new events right after they define them.

• Intra-week patterns, intra-month patterns.

• Bursty usage – log into your account once a week but run 30
queries.

• Drilldown / pivot workflows, e.g. "compute my funnel, now show
me example users who dropped off at step 3."

• The visualizer has its own specific usage pattern.

• Writes for 1b events / day are intermingled in all of this.

• Weekly backups taking up system resources.

What would a perfect benchmark handle?

 Benchmarking

Shadow Prod

System Tests

Unforeseen Issues

Local Tests

Foreseeable Issues

Performance Performance

In a context with very large variability, you might be

better off finding a way to test safely in prod, so as to

expose your code to that variability, rather than trying

to capture it in tests or benchmarks.

If you have a lot of variability, think "test in prod?"

• Powering our product is a javascript snippet that runs on every
customer's website.

• This javascript is very sensitive – can break a customer's
dataset or their website!

Testing Client Side JS

• We've built an extensive integration test suite to test across
browsers, OSes, different website designs...

• But the variability is endless.

Testing Client Side JS

We’re building out a “shadow heap.js” with the same principle:

capture the variability by getting new code into prod in a safe way.

• The basic principle is to load two versions of heap.js on select
customers' sites.

• We can correspond the events each version captures and compare
for any diffs.

• Similarly, we can discard data from the “shadow heap.js” version.

Testing Client Side JS

Geoff Kent Michael

Enoch Gediminas Andrew

Dan

Questions?
Or, ask me on twitter: @danlovesproofs

