
Tactical data engineering

Julian Hyde April 17–18, 2019
San Francisco

@julianhyde

DBMS

Data pipeline
& analytics

DBMS tricks

Tactical
data
engineering

Evolving the
data pipeline

Adaptive data
systems

1. DBMS

File system vs. DBMS

file 1 file 2

program

table 1

query

table 2

File system vs. DBMS

file 1 file 2

program

file 1 file 2

program

query

Efficient join: reorganize the data and
rewrite the program

sorted
file 1

sorted
file 2

program

file 1 file 2

program
(merge

join)

query

sorted
file 2

● Abstraction
● Declarative language
● Planning
● Easily reorganize data, add new algorithms
● Governance
● Metadata
● Security

And, I propose:
● Adaptability

DBMS adds value

2. Data pipeline

The data pipeline: Extract - Load - Transform

Cloud DB
table

table

table

table

table

table

source

source

The data pipeline: Extract - Load - Transform

Cloud DB
table

table

table

table

table

table

source

source

SQL query

business
query

interactive
users

File system vs. DBMS

file 1 file 2

program

file 1 file 2

program

query

File system vs. DBMS vs. analytic data system

file 1 file 2

program

file 1 file 2

program

query

Cloud DB

table

table

table

table

table

table

SQL query

business
query

File system vs. DBMS vs. analytic data system

file 1 file 2

program

file 1 file 2

program

query

Cloud DB

table

table

table

table

table

table

SQL query

business
query

business
usersanalystsprogrammers

3. DBMS tricks

Re-organize data
a 1

c 3

c 4

b 2

a .. b

c .. c

Index

a 1

b 2

c 3

c 4

Sort

Raw data

a 1

c 4

c 3

b 2

a 1

c 3

c 4

b 2

Partition

a 1

c 3

c 4

b 2

Replicate

a 1 1

c 7 2

b 2 1

Summarize

Caching
a 1

c 3

c 4

b 2

Raw data a 1

c 3

c 4

b 2

Copy of
data in
memory

Apache Calcite

Apache top-level project

Query planning framework used in many
projects and products

Also works standalone: federated query
engine with SQL / JDBC front end

Apache community development model

calcite.apache.org
github.com/apache/calcite

SELECT d.name, COUNT(*) AS c
FROM Emps AS e
JOIN Depts AS d USING (deptno)
WHERE e.age < 40
GROUP BY d.deptno
HAVING COUNT(*) > 5
ORDER BY c DESC

Relational algebra

Based on set theory, plus
operators: Project, Filter, Aggregate,
Union, Join, Sort

Requires: declarative language
(SQL), query planner

Original goal: data independence

Enables: query optimization, new
algorithms and data structures

Scan [Emps] Scan [Depts]

Join [e.deptno = d.deptno]

Filter [e.age < 30]

Aggregate [deptno, COUNT(*) AS c]

Filter [c > 5]

Project [name, c]

Sort [c DESC]

SELECT d.name, COUNT(*) AS c
FROM (SELECT * FROM Emps
 WHERE e.age > 50) AS e
JOIN Depts AS d USING (deptno)
GROUP BY d.deptno
HAVING COUNT(*) > 5
ORDER BY c DESC

Algebraic rewrite

Optimize by applying rewrite rules that
preserve semantics

Hopefully the result is less expensive;
but it’s OK if it’s not (planner keeps
“before” and “after”)

Planner uses dynamic programming,
seeking the lowest total cost

Scan [Emps] Scan [Depts]

Join [e.deptno = d.deptno]

Filter [e.age > 50]

Aggregate [deptno, COUNT(*) AS c]

Filter [c > 5]

Project [name, c]

Sort [c DESC]

SELECT deptno, MIN(salary)
FROM Managers
WHERE age > 50
GROUP BY deptno

Views

Scan [Emps] Scan [Emps]

Join [e.id = underling.manager]

Project [id, deptno, salary, age]

Aggregate [manager]

CREATE VIEW Managers AS
SELECT *
FROM Emps AS e
WHERE EXISTS (
 SELECT *
 FROM Emps AS underling
 WHERE underling.manager = e.id)

Filter [age > 50]

Aggregate [deptno, MIN(salary)]

Scan [Managers]

SELECT deptno, MIN(salary)
FROM Managers
WHERE age > 50
GROUP BY deptno

View query (after expansion)

Scan [Emps] Scan [Emps]

Join [e.id = underling.manager]

Project [id, deptno, salary, age]

Aggregate [manager]

CREATE VIEW Managers AS
SELECT *
FROM Emps AS e
WHERE EXISTS (
 SELECT *
 FROM Emps AS underling
 WHERE underling.manager = e.id)

Filter [age > 50]

Aggregate [deptno, MIN(salary)]

CREATE MATERIALIZED VIEW
 EmpSummary AS
SELECT deptno, gender,
 COUNT(*) AS c, SUM(sal) AS s
FROM Emps
GROUP BY deptno, gender

Materialized view

Scan [Emps]

SELECT COUNT(*) AS c
FROM Emps
WHERE deptno = 10
AND gender = ‘M’

Filter [deptno = 10 AND gender = ‘M’]

Aggregate [COUNT(*)]

Scan
[EmpSummary] =

Scan [Emps]

Aggregate [deptno, gender,
 COUNT(*), SUM(salary)]

CREATE MATERIALIZED VIEW
 EmpSummary AS
SELECT deptno, gender,
 COUNT(*) AS c, SUM(sal) AS s
FROM Emps
GROUP BY deptno, gender

Materialized view: rewrite query to match

Scan [Emps]

SELECT COUNT(*) AS c
FROM Emps
WHERE deptno = 10
AND gender = ‘M’

Filter [deptno = 10 AND gender = ‘M’]

Scan
[EmpSummary] =

Scan [Emps]

Aggregate [deptno, gender,
 COUNT(*), SUM(salary)]

Aggregate [deptno, gender,
 COUNT(*), SUM(salary)]

Project [c]

CREATE MATERIALIZED VIEW
 EmpSummary AS
SELECT deptno, gender,
 COUNT(*) AS c, SUM(sal) AS s
FROM Emps
GROUP BY deptno, gender

Materialized view: rewrite query to match

Scan [Emps]

SELECT COUNT(*) AS c
FROM Emps
WHERE deptno = 10
AND gender = ‘M’

Filter [deptno = 10 AND gender = ‘M’]

Scan
[EmpSummary] =

Scan [Emps]

Aggregate [deptno, gender,
 COUNT(*), SUM(salary)]

Aggregate [deptno, gender,
 COUNT(*), SUM(salary)]

Project [c]

CREATE MATERIALIZED VIEW
 EmpSummary AS
SELECT deptno, gender,
 COUNT(*) AS c, SUM(sal) AS s
FROM Emps
GROUP BY deptno, gender

Materialized view: substitute table scan

SELECT COUNT(*) AS c
FROM Emps
WHERE deptno = 10
AND gender = ‘M’

Filter [deptno = 10 AND gender = ‘M’]

Scan
[EmpSummary] =

Scan [Emps]

Aggregate [deptno, gender,
 COUNT(*), SUM(salary)]

Project [c]

Scan
[EmpSummary]

CREATE MATERIALIZED VIEW
 EmpSummary AS
SELECT deptno, gender,
 COUNT(*) AS c, SUM(sal) AS s
FROM Emps
GROUP BY deptno, gender

Materialized view: substitute table scan

SELECT c
FROM EmpSummary
WHERE deptno = 10
AND gender = ‘M’

Filter [deptno = 10 AND gender = ‘M’]

Scan
[EmpSummary] =

Scan [Emps]

Aggregate [deptno, gender,
 COUNT(*), SUM(salary)]

Project [c]

Scan
[EmpSummary]

4. Analytics

“orders” view in LookML

view: orders {
 dimension: id {
 primary_key: yes
 type: number
 sql: ${TABLE}.id ;;
 }

 dimension: customer_id { # field: orders.customer_id
 sql: ${TABLE}.customer_id ;;
 }

 dimension: amount { # field: orders.amount
 type: number
 value_format: "0.00"
 sql: ${TABLE}.amount ;;
 }

 measure: count { # field: orders.count
 type: count # creates a sql COUNT(*)
 }

 measure: total_amount {
 type: sum
 sql: ${amount} ;;
 }
}

5. Evolving the data
pipeline

Cloud DB
table

table

table

table

table

table

source

source

SQL query

business
query

interactive
users

Data engineering

table

table

table

table

table

table

Data engineering is not a static problem

table

table

table

table

table

table

table

file

In
memory
table

table

data engineer

Who is responsible for data engineering?

table

table

table

table

table

table

table

file

In
memory
table

table

system
(runtime
adaptation)

data
scientist

analystdata engineer

Data engineering - empower users, reduce friction

table

table

table

table

table

table

table

file

In
memory
table

table

LookML - derived table (based
on SQL)

view: customer_order_facts {
 derived_table: {
 sql:
 SELECT customer_id,
 MIN(DATE(time)) AS first_order_date,
 SUM(amount) AS lifetime_amount
 FROM order
 GROUP BY customer_id ;;
 }

 dimension: customer_id {
 type: number
 primary_key: yes
 sql: ${TABLE}.customer_id ;;
 }

 dimension_group: first_order {
 type: time
 timeframes: [date, week, month]
 sql: ${TABLE}.first_order_date ;;
 }

 dimension: lifetime_amount {
 type: number
 value_format: "0.00"
 sql: ${TABLE}.lifetime_amount ;;
 }
}

LookML - derived table (based
on an Explore)

view: customer_order_facts {
 derived_table: {
 explore_source: orders {
 column: customer_id {
 field: order.customer_id
 }

 column: first_order {
 field: order.first_order
 }

 column: lifetime_amount {
 field: order.lifetime_amount
 }
 }
 }

 dimension: customer_id {
 type: number
 primary_key: yes
 sql: ${TABLE}.customer_id ;;
 }

 dimension_group: first_order {
 type: time
 timeframes: [date, week, month]
 sql: ${TABLE}.first_order_date ;;
 }

Flavors of derived table

Derived table flavor Purpose SQL equivalent

Ephemeral Query expansion CREATE VIEW

Persistent Query is executed once, used by
several queries until it expires

CREATE TABLE AS
SELECT

Transparent Populated as persistent DT, but
can be used even if the business
query does not reference it by
name

CREATE MATERIALIZED
VIEW

Each flavor comes can be based on either an Explore or SQL

Building materialized views

Challenges:
● Design Which materializations to create?
● Populate Load them with data
● Maintain Incrementally populate when data changes
● Rewrite Transparently rewrite queries to use materializations
● Adapt Design and populate new materializations, drop unused ones
● Express Need a rich algebra, to model how data is derived

Initial focus: summary tables (materialized views over star schemas)

CREATE LATTICE Sales AS
SELECT t.*, c.*, COUNT(*), SUM(s.units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c USING (customerId)
JOIN Products AS p USING (productId);

Designing summary tables via lattices

CREATE MATERIALIZED VIEW SalesYearZipcode AS
SELECT t.year, c.state, c.zipcode,
 COUNT(*), SUM(units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c USING (customerId)
GROUP BY 1, 2, 3;

product

product
class

sales

customers

time

Many possible
summary
tables

Key

z zipcode (43k)
s state (50)
g gender (2)
y year (5)
m month (12)

() 1

(z, s, g, y,
m) 912k

(s, g, y,
m) 6k

(z) 43k (s) 50 (g) 2 (y) 5 (m) 12

raw 1m

(y, m) 60(g, y) 10(z, s)
43.4k

(g, y, m)
120

Fewer than you would
expect, because 5m

combinations cannot
occur in 1m row table

Fewer than you
would expect,
because state

depends on zipcode

Algorithm: Design summary tables

Given a database with 30 columns, 10M rows. Find X summary tables with under
Y rows that improve query response time the most.

AdaptiveMonteCarlo algorithm [1]:
● Based on research [2]
● Greedy algorithm that takes a combination of summary tables and tries to

find the table that yields the greatest cost/benefit improvement
● Models “benefit” of the table as query time saved over simulated query load
● The “cost” of a table is its size

[1] org.pentaho.aggdes.algorithm.impl.AdaptiveMonteCarloAlgorithm
[2] Harinarayan, Rajaraman, Ullman (1996). “Implementing data cubes efficiently”

Lattice (optimized) () 1

(z, s, g, y,
m) 912k

(s, g, y,
m) 6k

(z) 43k (s) 50 (g) 2 (y) 5 (m) 12

(z, g, y,
m) 909k

(z, s, y,
m) 831k

raw 1m

(z, s, g,
m) 644k

(z, s, g,
y) 392k

(y, m) 60(z, s)
43.4k

(z, s, g)
83.6k

(g, y) 10

(g, y, m)
120

(g, m)
24

Key

z zipcode (43k)
s state (50)
g gender (2)
y year (5)
m month (12)

system
(runtime
adaptation)

data
scientist

analystdata engineer

Data engineering - empower users, reduce friction

table

table

table

table

table

table

table

file

In
memory
table

table

data
scientist

system
(runtime
adaptation)

analystdata engineer

Data engineering - productionize

table

table

table

table

table

table

table

In
memory
table

file

table

Adaptive data systems

queries

DML

statistics adaptations

recommender

Goals ● Improve response time, throughput, storage cost
● Predictable, adaptive (short and long term), allow human

intervention

How? ● Humans
● Adaptive systems
● Smart algorithms

Example
adaptations

● Cache disk blocks in memory
● Cached query results
● Data organization, e.g. partition on a different key
● Secondary structures, e.g. b-tree and r-tree indexes

Thank you! Any questions?

@julianhyde
www.looker.com
calcite.apache.org

