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1. DBMS
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Efficient join: reorganize the data and 
rewrite the program
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● Abstraction
● Declarative language
● Planning
● Easily reorganize data, add new algorithms
● Governance
● Metadata
● Security

And, I propose:
● Adaptability

DBMS adds value



2. Data pipeline



The data pipeline: Extract - Load - Transform
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File system vs. DBMS vs. analytic data system
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3. DBMS tricks



Re-organize data
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Apache Calcite

Apache top-level project

Query planning framework used in many 
projects and products

Also works standalone: federated query 
engine with SQL / JDBC front end

Apache community development model

calcite.apache.org 
github.com/apache/calcite 



SELECT d.name, COUNT(*) AS c
FROM Emps AS e
JOIN Depts AS d USING (deptno)
WHERE e.age < 40
GROUP BY d.deptno
HAVING COUNT(*) > 5
ORDER BY c DESC

Relational algebra

Based on set theory, plus 
operators: Project, Filter, Aggregate, 
Union, Join, Sort

Requires: declarative language 
(SQL), query planner

Original goal: data independence

Enables: query optimization, new 
algorithms and data structures

Scan [Emps] Scan [Depts]

Join [e.deptno = d.deptno]

Filter [e.age < 30]

Aggregate [deptno, COUNT(*) AS c]

Filter [c > 5]

Project [name, c]

Sort [c DESC]



SELECT d.name, COUNT(*) AS c
FROM (SELECT * FROM Emps 
      WHERE e.age > 50) AS e
JOIN Depts AS d USING (deptno)
GROUP BY d.deptno
HAVING COUNT(*) > 5
ORDER BY c DESC

Algebraic rewrite

Optimize by applying rewrite rules that 
preserve semantics

Hopefully the result is less expensive; 
but it’s OK if it’s not (planner keeps 
“before” and “after”)

Planner uses dynamic programming, 
seeking the lowest total cost

Scan [Emps] Scan [Depts]

Join [e.deptno = d.deptno]

Filter [e.age > 50]

Aggregate [deptno, COUNT(*) AS c]

Filter [c > 5]

Project [name, c]

Sort [c DESC]



SELECT deptno, MIN(salary)
FROM Managers
WHERE age > 50
GROUP BY deptno

Views

Scan [Emps] Scan [Emps]

Join [e.id = underling.manager]

Project [id, deptno, salary, age]

Aggregate [manager]

CREATE VIEW Managers AS
SELECT *
FROM Emps AS e
WHERE EXISTS (
  SELECT *
  FROM Emps AS underling
  WHERE underling.manager = e.id)

Filter [age > 50]

Aggregate [deptno, MIN(salary)]

Scan [Managers]



SELECT deptno, MIN(salary)
FROM Managers
WHERE age > 50
GROUP BY deptno

View query (after expansion)

Scan [Emps] Scan [Emps]

Join [e.id = underling.manager]

Project [id, deptno, salary, age]

Aggregate [manager]

CREATE VIEW Managers AS
SELECT *
FROM Emps AS e
WHERE EXISTS (
  SELECT *
  FROM Emps AS underling
  WHERE underling.manager = e.id)

Filter [age > 50]

Aggregate [deptno, MIN(salary)]



CREATE MATERIALIZED VIEW
  EmpSummary AS
SELECT deptno, gender,
  COUNT(*) AS c, SUM(sal) AS s
FROM Emps
GROUP BY deptno, gender

Materialized view

Scan [Emps]

SELECT COUNT(*) AS c
FROM Emps
WHERE deptno = 10
AND gender = ‘M’

Filter [deptno = 10 AND gender = ‘M’]

Aggregate [COUNT(*)]

Scan 
[EmpSummary] =

Scan [Emps]

Aggregate [deptno, gender,
   COUNT(*), SUM(salary)]
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4. Analytics



“orders” view in LookML 

view: orders {
  dimension: id {
    primary_key: yes
    type: number
    sql: ${TABLE}.id ;;
  }

  dimension: customer_id {      # field: orders.customer_id
    sql: ${TABLE}.customer_id ;;
  }

  dimension: amount {           # field: orders.amount
    type: number
    value_format: "0.00"
    sql: ${TABLE}.amount ;;
  }

  measure: count {             # field: orders.count
    type: count                # creates a sql COUNT(*)
  }

  measure: total_amount {
    type: sum
    sql: ${amount} ;;
  }
}
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Data engineering
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Data engineering is not a static problem
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data engineer

Who is responsible for data engineering?
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system 
(runtime 
adaptation)

data 
scientist
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Data engineering - empower users, reduce friction
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LookML - derived table (based 
on SQL)

view: customer_order_facts {
  derived_table: {
    sql:
     SELECT customer_id,
       MIN(DATE(time)) AS first_order_date,
       SUM(amount) AS lifetime_amount
     FROM order
     GROUP BY customer_id ;;
  }

  dimension: customer_id {
    type: number
    primary_key: yes
    sql: ${TABLE}.customer_id ;;
  }

  dimension_group: first_order {
    type: time
    timeframes: [date, week, month]
    sql: ${TABLE}.first_order_date ;;
  }

  dimension: lifetime_amount {
    type: number
    value_format: "0.00"
    sql: ${TABLE}.lifetime_amount ;;
 }
}



LookML - derived table (based 
on an Explore)

view: customer_order_facts {
 derived_table: {
   explore_source: orders {
    column: customer_id {
      field: order.customer_id
    }

    column: first_order {
      field: order.first_order
    }

    column: lifetime_amount {
      field: order.lifetime_amount
    }
   }
 }

 dimension: customer_id {
   type: number
   primary_key: yes
   sql: ${TABLE}.customer_id ;;
 }

 dimension_group: first_order {
   type: time
   timeframes: [date, week, month]
   sql: ${TABLE}.first_order_date ;;
 }



Flavors of derived table

Derived table flavor Purpose SQL equivalent

Ephemeral Query expansion CREATE VIEW

Persistent Query is executed once, used by 
several queries until it expires

CREATE TABLE AS 
SELECT

Transparent Populated as persistent DT, but 
can be used even if the business 
query does not reference it by 
name

CREATE MATERIALIZED 
VIEW

Each flavor comes can be based on either an Explore or SQL



Building materialized views

Challenges:
● Design  Which materializations to create?
● Populate  Load them with data
● Maintain  Incrementally populate when data changes
● Rewrite  Transparently rewrite queries to use materializations
● Adapt  Design and populate new materializations, drop unused ones
● Express  Need a rich algebra, to model how data is derived

Initial focus: summary tables (materialized views over star schemas)



CREATE LATTICE Sales AS
SELECT t.*, c.*, COUNT(*), SUM(s.units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c USING (customerId)
JOIN Products AS p USING (productId);

Designing summary tables via lattices

CREATE MATERIALIZED VIEW SalesYearZipcode AS
SELECT t.year, c.state, c.zipcode,
  COUNT(*), SUM(units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c USING (customerId)
GROUP BY 1, 2, 3;

product

product 
class

sales

customers

time



Many possible
summary
tables

Key

z zipcode (43k)
s state (50)
g gender (2)
y year (5)
m month (12)

() 1

(z, s, g, y, 
m) 912k

(s, g, y, 
m) 6k

(z) 43k (s) 50 (g) 2 (y) 5 (m) 12

raw 1m

(y, m) 60(g, y) 10(z, s) 
43.4k

(g, y, m) 
120

Fewer than you would 
expect, because 5m 

combinations cannot 
occur in 1m row table

Fewer than you 
would expect, 
because state 

depends on zipcode



Algorithm: Design summary tables

Given a database with 30 columns, 10M rows. Find X summary tables with under 
Y rows that improve query response time the most.

AdaptiveMonteCarlo algorithm [1]:
● Based on research [2]
● Greedy algorithm that takes a combination of summary tables and tries to 

find the table that yields the greatest cost/benefit improvement
● Models “benefit” of the table as query time saved over simulated query load
● The “cost” of a table is its size

[1] org.pentaho.aggdes.algorithm.impl.AdaptiveMonteCarloAlgorithm
[2] Harinarayan, Rajaraman, Ullman (1996). “Implementing data cubes efficiently”



Lattice (optimized) () 1

(z, s, g, y, 
m) 912k

(s, g, y, 
m) 6k

(z) 43k (s) 50 (g) 2 (y) 5 (m) 12

(z, g, y, 
m) 909k
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raw 1m
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g gender (2)
y year (5)
m month (12)
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Adaptive data systems

queries

DML

statistics adaptations

recommender

Goals ● Improve response time, throughput, storage cost
● Predictable, adaptive (short and long term), allow human 

intervention

How? ● Humans
● Adaptive systems
● Smart algorithms

Example 
adaptations

● Cache disk blocks in memory
● Cached query results
● Data organization, e.g. partition on a different key
● Secondary structures, e.g. b-tree and r-tree indexes



Thank you! Any questions?
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