Data Council

Tactical data engineering

Julian Hyde April 17-18, 2019

San Francisco

y ?H' U | R
3 My G §ovs
L] ll;;._'.l M
Wl e
A 'ml‘!ll

ST e -

@julianhyde

T ,‘j",A_“ j e 5

DBMS

DBMS tricks

Tactical
data
engineering

Data pipeline
& analytics

Evolving the
data pipeline

Adaptive data
systems

1. DBMS

program

File system vs. DBMS

v

table 1 table 2

~

program

File system vs. DBMS w

program

program (merge
join)

sorted sorted
file 1 file 2

soﬂed
Efficient join: reorganize the data and

rewrite the program

DBMS adds value

Abstraction

Declarative language

Planning

Easily reorganize data, add new algorithms
Governance

Metadata

Security

And, | propose:
e Adaptability

2. Data pipeline

source Cloud DB

£
>3

source

The data pipeline: Extract - Load - Transform

interactive

users

Y

business
query

!

SQL query

source Cloud DB

£
>3

source

The data pipeline: Extract - Load - Transform

program

File system vs. DBMS

business
query

program

program Cloud DB

}
\-%/

@

File system vs. DBMS vs. analytic data system

rogrammers business
prog users
\J
business
{
Y SQL query

File system vs. DBMS vs. analytic data system

3. DBMS tricks

Re-organize data

Raw data

Index Sort Partition Replicate Summarize

Caching

Raw data

Copy of
datain
memory

Apache Calcite

Apache top-level project

Query planning framework used in many
projects and products

Also works standalone: federated query
engine with SQL / JDBC front end

Apache community development model

calcite.apache.org
github.com/apache/calcite

STORM"

NG#:DATA

\DR’ILL HerdDB
__

PHOENIX . 72
Solr ~

Alibaba (

I“I Apache Flink
m CASCADING mbule

¢ dremio

e &

Connects to

sk

JDBC

splunk > @
o {JSON}

cassandra

= elasticsearch

) mongo

APACHE

\
%, GEODE

Relational algebra

Based on set theory, plus
operators: Project, Filter, Aggregate,
Union, Join, Sort

Requires: declarative language
(SQL), query planner

Original goal: data independence

Enables: query optimization, new
algorithms and data structures

SELECT d.name, COUNT(*) AS c
FROM Emps AS e

JOIN Depts AS d USING (deptno)

WHERE e.age < 40
GROUP BY d.deptno

HAVING COUNT(*) > 5

Sort [c DESC]

ORDER BY c DESC

i

Project [name, c]

t

Filter [c > 5]

I

Aggregate [deptno, COUNT(*) AS c]

t

Filter [e.age < 30]

t

Join [e.deptno = d.deptno]

Scan [Emps]

ZAN

Scan [Depts]

Algebraic rewrite

Optimize by applying rewrite rules that

preserve semantics

Hopefully the result is less expensive;
but it's OK if it's not (planner keeps
“before” and “after”)

Planner uses dynamic programming,
seeking the lowest total cost

SELECT d.name, COUNT(*) AS c
FROM (SELECT * FROM Emps

WHERE e.age > 50) AS e
JOIN Depts AS d USING (deptno)
GROUP BY d.deptno

HAVING COUNT(*) > 5 Sort [c DESC]

ORDER BY c DESC T

Project [name, c]

t

Filter [c > 5]

I

Aggregate [deptno, COUNT(*) AS c]

t

) Join [e.deptno = d.deptno]
b Filter [e.age > 50]

\

Scan [Emps]

Scan [Depts]

Views

Aggregate [deptno, MIN(salary)]

SELECT deptno, MIN(salary) T
FROM Managers

Filter [age > 50]
WHERE age > 50 T

GROUP BY deptno

Scan [Managers]

CREATE VIEW Managers AS Project [id, deptno, salary, age]
SELECT * A
FROM Emps AS e Join [e.id = underling.manager]

WHERE EXISTS (

SELECT =* Aggregate [manager]

FROM Emps AS underling A
WHERE underling.manager = e.id) Scan [Emps] Scan [Emps]

View query (after expansion)

SELECT deptno, MIN(salary)
FROM Managers
WHERE age > 50 Aggregate [deptno, MIN(salary)]

GROUP BY deptno A
Filter [age > 50]

i

CREATE VIEW Managers AS Project [id, deptno, salary, age]
SELECT *)

FROM Emps AS e Join [e.id = underling.manager]
WHERE EXISTS (

SELECT =* Aggregate [manager]

FROM Emps AS underling A
WHERE underling.manager = e.id) Scan [Emps] Scan [Emps]

Materialized view

CREATE MATERIALIZED VIEW
EmpSummary AS
SELECT deptno, gender,

COUNT(*) AS c, SUM(sal) AS s
FROM Emps
GROUP BY deptno, gender

SELECT COUNT(*) AS c
FROM Emps

WHERE deptno = 10
AND gender = ‘M’

Scan
[EmpSummary]

Aggregate [deptno, gender,
COUNT(*), SUM(salary)]

i

Scan [Emps]

Aggregate [COUNT(*)]

t

Filter [deptno = 10 AND gender = ‘M’]

t

Scan [Emps]

Materialized view: rewrite query to match

Aggregate [deptno, gender,
COUNT(*), SUM(salary)]

CREATE MATERIALIZED VIEW

Scan —
[EmpSummary] T

EmpSummary AS Scan [Emps]
SELECT deptno, gender,

COUNT(*) AS c, SUM(sal) AS s
FROM Emps
GROUP BY deptno, gender Project [c]

{

Filter [deptno = 10 AND gender = ‘M’]
SELECT COUNT(*) AS c A

FROM Emps Aggregate [deptno, gender,
COUNT(*), SUM(salary)]

WHERE deptno = 10
AND gender = ‘M’ T

Scan [Emps]

Materialized view: rewrite query to match

Aggregate [deptno, gender,
COUNT(*), SUM(salary)]

CREATE MATERIALIZED VIEW

Scan —
[EmpSummary] T

EmpSummary AS Scan [Emps]
SELECT deptno, gender,

COUNT(*) AS c, SUM(sal) AS s
FROM Emps
GROUP BY deptno, gender Project [c]

{

Filter [deptno = 10 AND gender = ‘M’]
SELECT COUNT(*) AS c A

FROM Emps Aggregate [deptno, gender,
COUNT(*), SUM(salary)]

WHERE deptno = 10
AND gender = ‘M’ T

Scan [Emps]

Materialized view: substitute table scan

Aggregate [deptno, gender,
COUNT(*), SUM(salary)]

Scan p— T

CREATE MATERIALIZED VIEW [EmpSummary]

EmpSummary AS Scan [Emps]
SELECT deptno, gender,

COUNT(*) AS c, SUM(sal) AS s
FROM Emps
GROUP BY deptno, gender Project [c]

{

Filter [deptno = 10 AND gender = ‘M’]
SELECT COUNT(*) AS c A

FROM Emps Scan
[EmpSummary]

WHERE deptno = 10
AND gender = ‘M’

Materialized view: substitute table scan

CREATE MATERIALIZED VIEW
EmpSummary AS
SELECT deptno, gender,

COUNT(*) AS c, SUM(sal) AS s
FROM Emps
GROUP BY deptno, gender

SELECT c
FROM EmpSummary

WHERE deptno = 10
AND gender = ‘M’

Scan
[EmpSummary]

Aggregate [deptno, gender,
COUNT(*), SUM(salary)]

Project [c]

{

i

Scan [Emps]

Filter [deptno = 10 AND gender = ‘M’]

t

Scan
[EmpSummary]

4. Analytics

view: orders
dimension: id
primary key: yes
type: number
sgl: ${TABLE}.id ;;

dimension: customer_ id
sgl: ${TABLE}.customer_id ;;

dimension: amount
type: number
value format: "0.00"
sgl: ${TABLE}.amount ;;

measure: count
type: count

|ooker

measure: total_amount
type: sum
sgl: ${amount} ;;

“orders” view in LookML

$46.98 10.3%

'oYo X

»

Orders by Date and Category A Us Paciic (America - Los Angeles) - - 31 rows - from cache - 2m ago

Order Items » FILTERS Orders Created Date "2014/03/01 to 2014/04/01" | cts Category Name is

v VISUALIZATION EDIT & w

All Fields Dimensions Measures
15

Inventory items)

Order Facts

Order Item...

Order Items

FILTER-ONLY FIELDS

Brand Select a : " : :
@ Accessories Blazers & Jackets @ Fashion Hoodies & Sweatshirts

DIMENSIONS @ 5shorts Sweaters

Brand Comparitor

Gross Margin v DATA RESULTS

Gross Margin Tier Products Accessories Blazers & Fashion Hoodies Pants « Shorts Sweaters

id Category ~ Jackets & Sweatshirts w

‘ Name >
Item Gross Margin Percentage
Orders Order Order ltems

Item Gross Margin Percentage Created ltems Count
Tier Date v/ Count

Return Date 2014-03-31

2014-03-30

2014-03-29

2014-03-28

Returned (Yes / No)

Sale Price

MEASURES

Powered by ldoker

You are in Development Mode.
|doker
thelook

P Your Personal Branch
dev-veronica-phillips-fnwg

You've edited this project.
Commit your changes before pushing.

B

Project has changed, errors are out of

date.

Validate Again

Add...

Project

manifest

Models

3
thelook_events
thelook_information

thelook_users

Dashboards
abbreviate_order_data
business_overview_by_date
customer_overview
dashboard_tooltip_test
erin_docs_lookml_dashboard

fromlookml_business_overview

Views

bgml_test

1

Browse v Explo? Develop v

Development Mode D

thelook ~ SQL Runner

coONOUVI A WNER

connection: "thelook_ey Content Validator
include: "*.view.lkml" F
SSes Manage LookML Projects
include: "*.dashboard.l g !

label: "eCommerce" e flights

imdb

intro_to_looker
fiscal_month_off —

datagroup: orders. thelook

max_cache_age: "24 hc
sql_trigger: select max(id) from order_items ;;

explore: order_items
label: "Order Item Information"

description: "Based on the individual items that comprise customer orders"

join: order_facts
view_label: "Orders and more"
relationship: many_to_one
sql_on: ${order_facts.order_id} = ${order_items.order_id}

join: inventory_items
view_label: "Inventory Items"
type: full_outer
relationship: one_to_many
sql_on: ${inventory_items.id} = ${order_items.inventory_item_id}

join: users
relationship: many_to_one
sql_on: ${order_items.user_id} = ${users.id}

join: user_order_facts {
view_label: "Users"
relationship: many_to_one
sql_on: ${user_order_facts.user_id} = ${order_items.user_id} ;

Exit Development Mode

QB@oe

Find & Replace in Project

Saved Save &

Quick Help -]

A model references a combination
of related explores. Unlike other
LookML elements, a model is not
declared explicitly with the model
keyword.

model: {
access_grant:
case_sensitive:
connection:
datagroup:
explore:
fiscal_month_offset:
include:
label:

map_layer:

named_value_format:

persist_for:

persist_with:

view:

week_start_day:
monday

5. Evolving the data
pipeline

interactive

users

Y

business
query

!

SQL query

source Cloud DB

£

>3

source

- B
- B

Data engineering

Data engineering is not a static problem

mmmmmm
ttttt

data engineer

In
memory

table
E*X
9 table tabl

Who is responsible for data engineering?

o

data engineer analyst system data
(runtime scientist

adaptation)

a7

In
memory

table
- g
9 table table

Data engineering - empower users, reduce friction

view: customer_ order facts
derived table:

sql:

SELECT customer_id,
MIN (DATE (time)) AS first_ order date,
SUM (amount) AS lifetime_amount

FROM order

GROUP BY customer_id ;;

dimension: customer_id
type: number
primary key: yes
sgl: ${TABLE}.customer_id ;;

dimension_group: first order
type: time
timeframes: [date, week, month]
sgl: ${TABLE}.first_order date ;;

dimension: lifetime amount
type: number
value format: "0.00"
sgl: ${TABLE}.lifetime amount ;;

LookML - derived table (based
on SQL)

view: customer_ order facts
derived table:
explore source: orders
column: customer_ id
field: order.customer_id

column: first order
field: order.first_order

column: lifetime amount
field: order.lifetime_amount

dimension: customer_id
type: number
primary key: yes
sgl: ${TABLE}.customer_id ;;

dimension_group: first order
type: time
timeframes: [date, week, month]

LookML - derived table (based Sql: ${TABLE).first order date ;;
on an Explore)

Flavors of derived table

Derived table flavor Purpose SQL equivalent

Ephemeral Query expansion CREATE VIEW

Persistent Query is executed once, used by CREATE TABLE AS
several queries until it expires SELECT

Transparent Populated as persistent DT, but CREATE MATERIALIZED

can be used even if the business VIEW
query does not reference it by
name

Each flavor comes can be based on either an Explore or SQL

Building materialized views

Challenges:

Design Which materializations to create?

Populate Load them with data

Maintain Incrementally populate when data changes

Rewrite Transparently rewrite queries to use materializations
Adapt Design and populate new materializations, drop unused ones
Express Need a rich algebra, to model how data is derived

Initial focus: summary tables (materialized views over star schemas)

Designing summary tables via lattices

CREATE MATERIALIZED VIEW SalesYearZipcode AS
SELECT t.year, c.state, c.zipcode,
COUNT(*), SUM(units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c¢ USING (customerId)
GROUP BY 1, 2, 3;

CREATE LATTICE Sales AS

SELECT t.*, c.*, COUNT(*), SUM(s.units)
FROM Sales AS s

JOIN Time AS t USING (timeId)

JOIN Customers AS c USING (customerId)
JOIN Products AS p USING (productId);

Many possible
summary

Key Fewer than you

would expect,
because state
depends on zipcode

z zipcode (43k)
s state (50)
g gender (2)

y year (5)

m month (12)

@1\

Fewer than you would
expect, because 5m
combinations cannot
occur in Tm row table

Algorithm: Design summary tables

Given a database with 30 columns, 10M rows. Find X summary tables with under
Y rows that improve query response time the most.

AdaptiveMonteCarlo algorithm [1]:
e Based on research [2]
e Greedy algorithm that takes a combination of summary tables and tries to
find the table that yields the greatest cost/benefit improvement
e Models “benefit” of the table as query time saved over simulated query load
e The “cost” of atableis its size

[1] org.pentaho.aggdes.algorithm.impl.AdaptiveMonteCarloAlgorithm
[2] Harinarayan, Rajaraman, Ullman (1996). “Implementing data cubes efficiently”

Lattice (optimized)

z zipcode (43k)
s state (50)

g gender (2)

y year (5)

m month (12)

data engineer analyst system data
(runtime scientist

adaptation)

a7

In
memory

table
- g
9 table table

Data engineering - empower users, reduce friction

data engineer analyst system data
(runtime scientist

adaptation)

In

AN

table
E9
El—EX \

Data engineering - productionize

Adaptive data systems

Goals e Improve response time, throughput, storage cost
e Predictable, adaptive (short and long term), allow human

intervention
'

adaptations

How? e Humans
Adaptive systems
Smart algorithms

Cache disk blocks in memory
Cached query results

Data organization, e.g. partition on a different key
Secondary structures, e.g. b-tree and r-tree indexes

Example
adaptations

Thank you! Any questions?

@julianhyde
www.looker.com _
calcite.apache.org | i

' Data Council

p 1 rageny b "'H L
g, .- M~y i b l "‘a. ,'Illiﬂéﬁ-i“‘*

. 0. BoNin o -, " AE‘L"‘-"-; ' e : Mg
L el —— /. APACHE
Yo [| l!l'll ; "!]_ 5‘%‘ = UDATION
' Sl E R L "'-'" ugr - ST

