
Scaling model training
From flexible training APIs to resource management
with Kubernetes

Kelley Rivoire, Stripe

Real World Machine Learning (@ Stripe)

● Stripe provides a toolkit to start and run an internet business

● We need to make decisions quickly and at scale
● Our actions affect real businesses

Model training

Toy model of ML

ba c d e X

10 1 0 0 G

11 1 0 1 B

01 1 1 0 B

10 0 1 0 B

01 1 0 0 B
Good! Good!Bad! Bad!

f(a, b, c, d, e)

h(a, b, c, d, e)g(a, b, c, d, e)

Model training system wishlist

● Easy to get started
● Flexible - facilitate experimentation with libraries, model types,

parameters
● Automatable
● Tracking and reporting
● Interfaces with ML ecosystem (e.g. features, inference)
● Reliable
● Secure
● Abstract away resource management

Model training system wishlist

● Easy to get started
● Flexible - facilitate experimentation with libraries, model types,

parameters
● Automatable
● Tracking and reporting
● Interfaces with ML ecosystem (e.g. features, inference)
● Reliable
● Secure
● Abstract away resource management

Railyard API

Railyard on Kubernetes

Railyard API

Training data

Railyard
(training API)

Model training
workflow (python)

Model
evaluation

How it works

class StripeFraudModel(StripeMLWorkflow):

 def train(self, training_dataframe, holdout_dataframe):
 pipeline = Pipeline([
 ('boosted', xgboost.XGBRegressor(**self.custom_params))
])

 serializable_pipeline = stripe_ml.make_serializable(pipeline)
 fitted_pipeline = pipeline.fit(training_dataframe,
self.classifier_label)
 return fitted_pipeline

Example workflow

API Request: Metadata
{

 "model_description" : "A model to predict fraud",

 "model_name" : "fraud_prediction_model",

 "owner" : "machine-learning-infrastructure",

 "project": "strata-data-talk",

 "trainer": "kelley",

 ...

API Request: Data
 "data" : {

 "features" : [

 {

 "names" : ["created_at", "charge_type", "charge_amount",
"charge_country", "has_fraud_dispute"],

 "path": "s3://path/to/parquet/fraud_data.parq"

 }

],

 "date_column": "created_at",

API Request: Filters
 "filters" : [

 {

 "feature_name" : "charge_country",

 "predicate" : "IsIn",

 "feature_value" : {

 "string_vals": ["US", "CA"]

 }

 }],

API Request: Holdout data
 "holdout_sampling" : {

 "sampling_function" : "DATE_RANGE",

 "date_range_sampling" : {

 "date_column" : "created_at",

 "start_date": "2018-10-01",

 "end_date": "2019-01-01"

 }

 }

API Request: Training!
 "train" : {

 "workflow_name" : "StripeFraudModel",

 "classifier_features": ["charge_type", "charge_amount"],

 "label" : "has_fraud_dispute"

 "custom_params": {

 "objective": "reg:linear",

 "max_depth": 6,

 "n_estimators": 500,

 }

 }

}

API Request: Training!
 "train" : {

 "workflow_name" : "StripeFraudModel",

 "classifier_features": ["charge_type", "charge_amount"],

 "label" : "has_fraud_dispute"

 "custom_params": {

 "objective": "reg:linear",

 "max_depth": 6,

 "n_estimators": 500,

 }

 }

}

POST /train <request>

"9081e64f-b2c0-455e-bcaa-c1c211fa124b"

GET /job/{job_id}/status

GET /job/{job_id}/result

Example request and response

GET /job/{job_id}/result

{

 "status": {

 "job_id": {job_id},

 "log_file":"s3://{path}/{job_id}/logs",

 "transition": {

 "created_at":"2019-03-22 18:00:04 +0000",

 "job_state":"complete"

 },

 "git_commit":{git_SHA}

 },

 "result":{

 "evaluation_holdout_data_path":"s3://{dir}/{model_id}/scores.tsv",

 "evaluation_holdout_label_path":"s3://{dir}/{model_id}/labels.tsv",

 "diorama_id":"sha256.FDK2WAU4ULUV7ERWP3BMSVGPBGWG2GPUTUZXHOZRVSNCA4LPGVRA"

 },

 "exceptionInfo":null

}

Training data

Railyard
(training API)

Model training
workflow (python)

Model
evaluation

How it works

Retraining
service

Kafka S3Application

Publish
events Archival

Training data
generation

S3

Railyard
(training API)

Model training
workflow (python)

Model
evaluation

Update tag
<-> model

Model package

Predict by tag diorama
(real-time
inference)

What we learned

API:

● Be flexible with model parameters
● Not using a DSL was the right choice for us.
● Tracking model provenance and ownership is really important

Workflow:

● Interfaces are important
● Users should not have to think about model serialization or persistence
● Measure each step

Model training system wishlist

✅ Easy to get started
✅ Flexible - facilitate experimentation with libraries, model types,

parameters
✅ Automatable
✅ Tracking and reporting
✅ Interfaces with ML ecosystem (e.g. features, inference)

Railyard API

Railyard on Kubernetes

● Reliable
● Secure
● Abstract away resource management

Railyard on Kubernetes

In the beginning

i3.16xlarge i3.16xlarge p3.2xlarge

sally sally

jim

mindy

joe

sally

In the beginning

i3.16xlarge i3.16xlarge p3.2xlarge

sally sally

jim

mindy

joe

sally

Running on Kubernetes

.par file Docker
container

par_binary(
 name = "railyard_train",
 srcs = ["@.../ml:railyard_srcs"],
 data = ["@.../ml:railyard_data"],
 main = "@.../ml:railyard/train.py",
 deps = all_requirements,
)

command: ["sh"]
args: ["-c", "python /railyard_train.par"]

Running on Kubernetes

{

 "compute_resource": "GPU"

}

Heterogeneous workflows

Model training system wishlist

✅ Easy to get started
✅ Flexible - facilitate experimentation with libraries, model types,

parameters
✅ Automatable
✅ Tracking and reporting
✅ Interfaces with ML ecosystem (e.g. features, inference)

Railyard API

Railyard on Kubernetes

✅ Reliable
✅ Secure
✅ Abstract away resource management

What we learned

● Instance flexibility is important!
● Still takes some trial and error
● Subpar was a great choice for us
● Having a good Orchestration team running Kubernetes has been a force

multiplier.

Railyard in action

By the numbers

● Many workflows - from user-facing products like Radar to payments

optimization to internal-facing modeling and risk management

● Libraries including scikit-learn, pytorch, fasttext, xgboost, and prophet

● Hundreds of thousands of models trained, thousands more every week

● CPU, GPU, and high memory resource types

● Models used in 100s of millions of real-time predictions every day

Railyard Railyard on
Kubernetes

~0 per week

Thousands per
week

Number of models trained

What we did

● Simple but flexible API for running and automating training workflows

● Resource management via Kubernetes to reduce toil, improve

reliability and security

● Instrumentation throughout to track model provenance and

ownership, as well as debug and profile training jobs

● We use it to train thousands of models per week for a range of

user-facing and internal ML applications

Feedback from our users!

“Training models with railyard has been nice - it’s saved me time by
abstracting away the more tedious parts of training (loading data,
separating training/test sets, fitting and scoring, writing output files),
allowing me to focus more on building features and model architecture.”

“Railyard has made it much simpler to write a new pipeline. When <new
teammate> started, I was able to simply point him towards docs to get him
going.”

“I explained the ml stack for <my project> to several people on <my> team
and they were really relieved to hear that training code used a "standard"
way of doing things that they could count on others knowing about.”

Thanks / come work with me :)

● Stripe is hiring for interesting Data roles in Seattle, SF, and remote,
using data to track and move money, build state-of-the-art ML

● Special thanks to Rob Story, Thomas Switzer, and Sam Ritchie

