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Real World Machine Learning (@ Stripe) 

● Stripe provides a toolkit to start and run an internet business

● We need to make decisions quickly and at scale
● Our actions affect real businesses







Model training
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Model training system wishlist

● Easy to get started
● Flexible - facilitate experimentation with libraries, model types, 

parameters
● Automatable
● Tracking and reporting
● Interfaces with ML ecosystem (e.g. features, inference)
● Reliable
● Secure
● Abstract away resource management



Model training system wishlist

● Easy to get started
● Flexible - facilitate experimentation with libraries, model types, 

parameters
● Automatable
● Tracking and reporting
● Interfaces with ML ecosystem (e.g. features, inference)
● Reliable
● Secure
● Abstract away resource management

Railyard API

Railyard on Kubernetes
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class StripeFraudModel(StripeMLWorkflow):

    def train(self, training_dataframe, holdout_dataframe):
        pipeline = Pipeline([
            ('boosted', xgboost.XGBRegressor(**self.custom_params))
        ])

 serializable_pipeline = stripe_ml.make_serializable(pipeline)
        fitted_pipeline = pipeline.fit(training_dataframe, 
self.classifier_label)
        return fitted_pipeline

Example workflow



API Request:  Metadata
{

  "model_description" : "A model to predict fraud",

  "model_name" : "fraud_prediction_model",

  "owner" : "machine-learning-infrastructure",

  "project": "strata-data-talk",

  "trainer": "kelley",

  ...

       



API Request: Data
   "data" : {

    "features" : [

      {

        "names" : ["created_at", "charge_type", "charge_amount", 
"charge_country", "has_fraud_dispute"],

        "path": "s3://path/to/parquet/fraud_data.parq"

      }

    ],

    "date_column": "created_at",

   



API Request: Filters
      "filters" : [

      {

        "feature_name" : "charge_country",

        "predicate" : "IsIn",

        "feature_value" : {

          "string_vals": ["US", "CA"] 

        }

      }],



API Request: Holdout data
     "holdout_sampling" : {

      "sampling_function" : "DATE_RANGE",

      "date_range_sampling" : {

        "date_column" : "created_at",

        "start_date": "2018-10-01",

        "end_date": "2019-01-01"

      }

    }



API Request: Training!
  "train" : {

    "workflow_name" : "StripeFraudModel",

    "classifier_features": ["charge_type", "charge_amount"],

    "label" : "has_fraud_dispute"

    "custom_params": {

        "objective": "reg:linear",

        "max_depth": 6,

        "n_estimators": 500,

      }

  }

}
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POST /train <request>

"9081e64f-b2c0-455e-bcaa-c1c211fa124b"

GET /job/{job_id}/status

GET /job/{job_id}/result

Example request and response



GET /job/{job_id}/result

{

  "status": {

    "job_id": {job_id},

    "log_file":"s3://{path}/{job_id}/logs",

    "transition": {

      "created_at":"2019-03-22 18:00:04 +0000",

      "job_state":"complete"

     },

     "git_commit":{git_SHA}

     },

  "result":{

    "evaluation_holdout_data_path":"s3://{dir}/{model_id}/scores.tsv",

    "evaluation_holdout_label_path":"s3://{dir}/{model_id}/labels.tsv",

    "diorama_id":"sha256.FDK2WAU4ULUV7ERWP3BMSVGPBGWG2GPUTUZXHOZRVSNCA4LPGVRA"

  },

  "exceptionInfo":null

}
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What we learned 

API:

● Be flexible with model parameters
● Not using a DSL was the right choice for us.
● Tracking model provenance and ownership is really important

Workflow:

● Interfaces are important
● Users should not have to think about model serialization or persistence
● Measure each step



Model training system wishlist

✅ Easy to get started
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Railyard on Kubernetes
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Running on Kubernetes

.par file Docker 
container

par_binary(
    name = "railyard_train",
    srcs = ["@.../ml:railyard_srcs"],
    data = ["@.../ml:railyard_data"],
    main = "@.../ml:railyard/train.py",
    deps = all_requirements,
)

command: ["sh"]
args: ["-c", "python /railyard_train.par"]



Running on Kubernetes



{

    "compute_resource": "GPU"

}

Heterogeneous workflows
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What we learned 

● Instance flexibility is important!
● Still takes some trial and error
● Subpar was a great choice for us
● Having a good Orchestration team running Kubernetes has been a force 

multiplier.



Railyard in action









By the numbers

● Many workflows - from user-facing products like Radar to payments 

optimization to internal-facing modeling and risk management

● Libraries including scikit-learn, pytorch, fasttext, xgboost, and prophet

● Hundreds of thousands of models trained, thousands more every week

● CPU, GPU, and high memory resource types

● Models used in 100s of millions of real-time predictions every day



Railyard Railyard on 
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What we did 

● Simple but flexible API for running and automating training workflows

● Resource management via Kubernetes to reduce toil, improve 

reliability and security

● Instrumentation throughout to track model provenance and 

ownership, as well as debug and profile training jobs

● We use it to train thousands of models per week for a range of 

user-facing and internal ML applications



Feedback from our users!

“Training models with railyard has been nice - it’s saved me time by 
abstracting away the more tedious parts of training (loading data, 
separating training/test sets, fitting and scoring, writing output files), 
allowing me to focus more on building features and model architecture.”

“Railyard has made it much simpler to write a new pipeline. When <new 
teammate> started, I was able to simply point him towards docs to get him 
going.”

“I explained the ml stack for  <my project> to several people on <my> team 
and they were really relieved to hear that training code used a "standard" 
way of doing things that they could count on others knowing about.”



Thanks / come work with me :)

● Stripe is hiring for interesting Data roles in Seattle, SF, and remote, 
using data to track and move money, build state-of-the-art ML

● Special thanks to Rob Story, Thomas Switzer, and Sam Ritchie


