Scaling Data Products Under Startup Constraints

• • •

A Case Study of ML Bias Testing

Scaling Data Products Under Sup Constraints

A Case Study of ML Bias Testing

Edwin Ong @edwin Co-Founder, TinyData

Founded CastTV (acquired by Tribune)

Founded FileFish (acquired by Oracle)

Stanford Symbolic Systems

TinyData

Help other companies make data products

Make our own data products

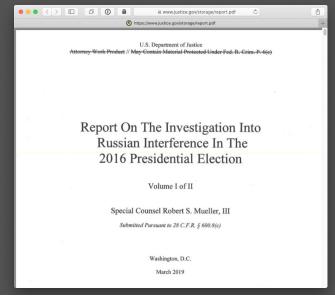
Problem: Testing Machine Learning in Production

• Tools for machine learning testing in training

Not as many tools for machine learning testing in production

 Different tools needed because ML testing is different from traditional software testing

Traditional Software Has Deterministic Outcomes



Traditional Software Has Deterministic Outcomes

```
pods/probe/exec-liveness.yaml
apiVersion: v1
kind: Pod
metadata:
 labels:
    test: liveness
  name: liveness-exec
spec:
  containers:
  - name: liveness
   image: k8s.gcr.io/busybox
    args:
    - /bin/sh
    - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600
    livenessProbe:
      exec:
        command:
        - cat
       - /tmp/healthy
      initialDelaySeconds: 5
      periodSeconds: 5
```

kubectl describe pod liveness-exec

ML Has Probabilistic Outcomes

Dog vs Muffin given new user input

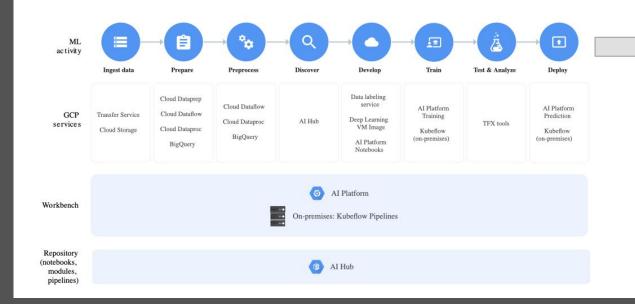
ML Has Probabilistic Outcomes That Change Over Time

Version 1: Muffin (59%)

Version 2: Muffin (66%)

ML Platforms Often End at Deploy

Machine learning development: the end-to-end cycle



New User Input

Production Testing

ML Chaos Engineering

Requirements for Production ML Testing Tool

1. "Entropy": Generation of new inputs against model servers

2. Recording of outputs from model servers

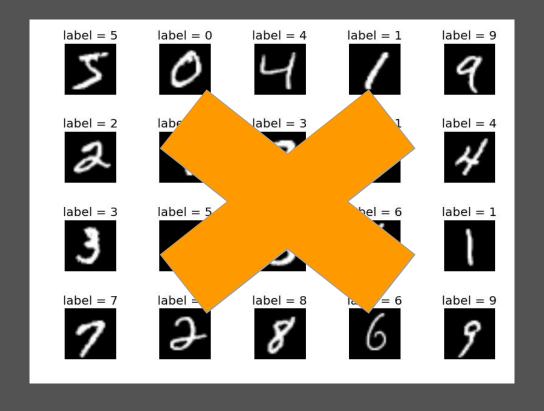
3. Feedback loop for additional training

Challenges for Building as a Startup

1. Need access to non-toy model servers

2. Need access to generated data for testing model servers

Access to Non-Toy Model Servers



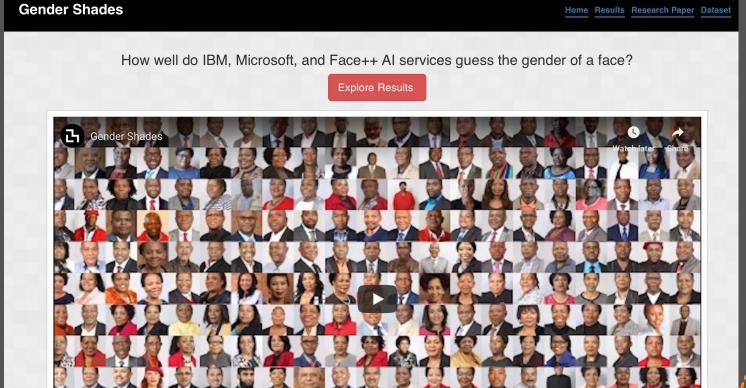
Non-Toy Model Servers: Commercial Cloud Services

IBM Watson™

Commercial Image Recognition Services

- Opaque systems
- Object and scene detection, facial recognition, facial analysis,
 NSFW detection, text detection
- Facial analysis includes gender detection

GenderShades.org



Testing Commercial Systems for Gender Bias

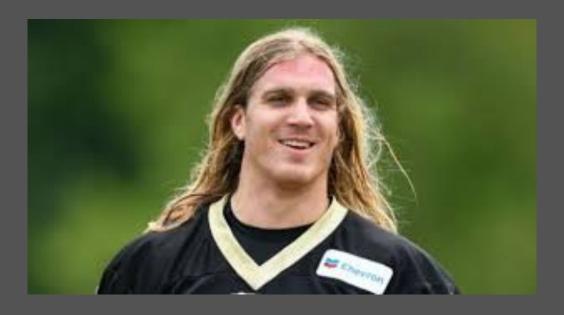
- Testing = Finding cases where trained systems fail
- Hypothesis: Gender labels are trained on traditional images
- What if we generate "non-traditional" images?

Training Data vs Test Data

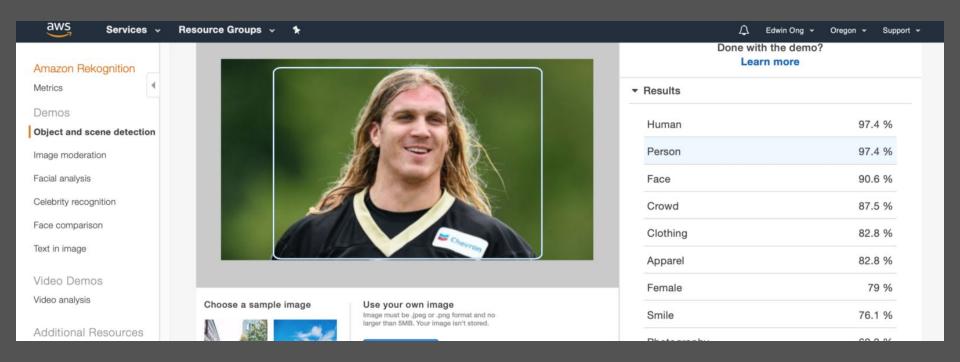
Training Data

Test Data

A Man with Long Hair



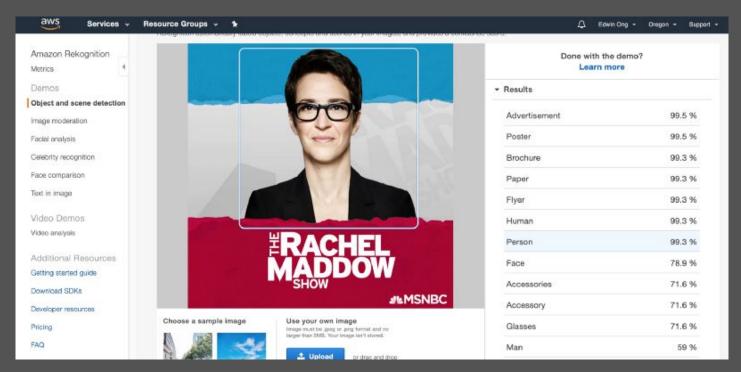
A Man with Long Hair

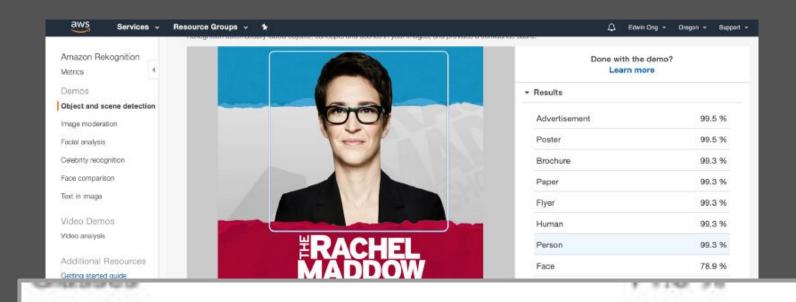


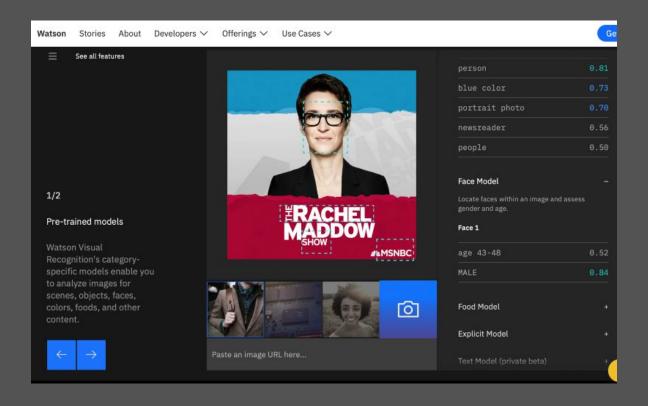
A Man with Long Hair

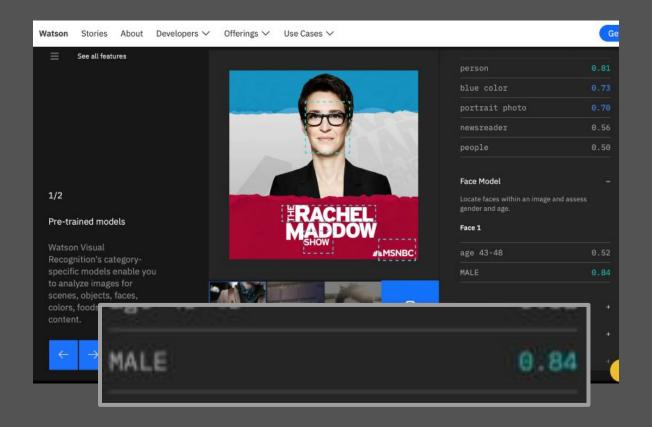
Female

79 %

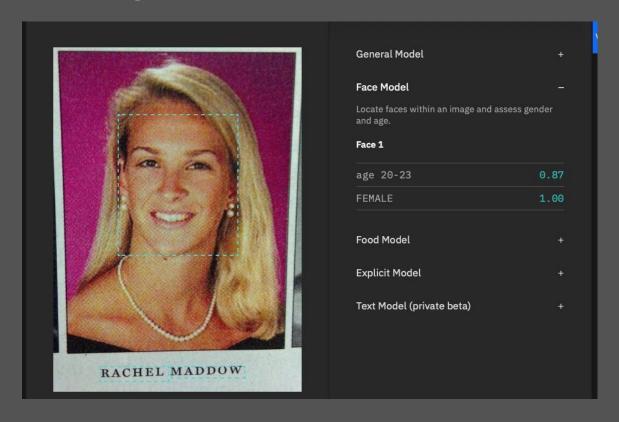




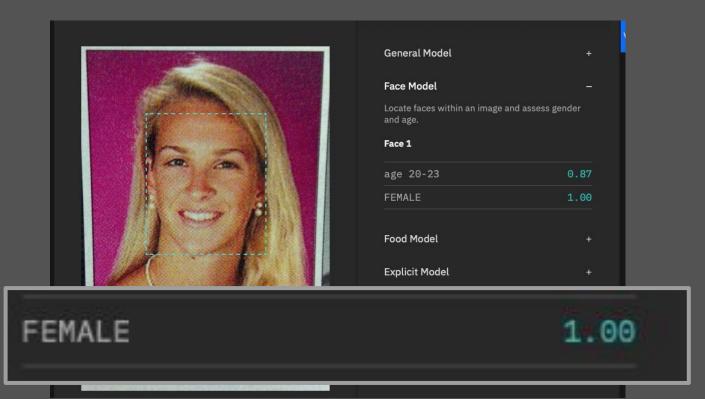




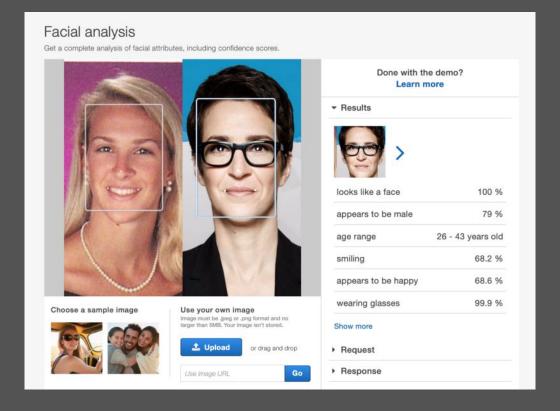
Woman with Long Hair

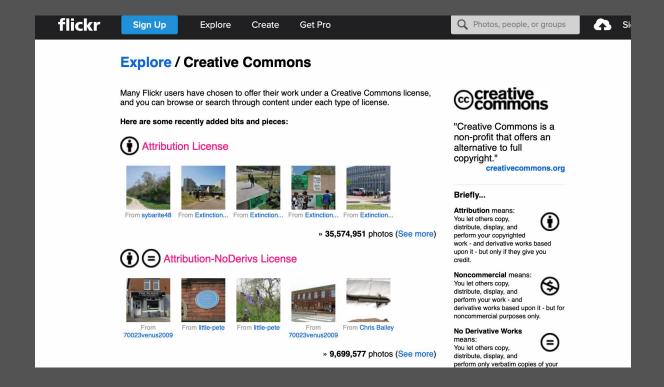


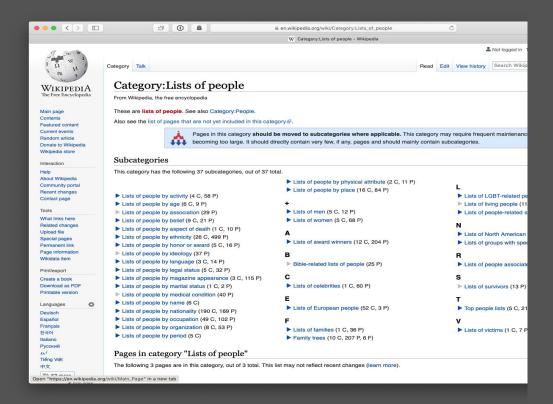
Woman with Long Hair



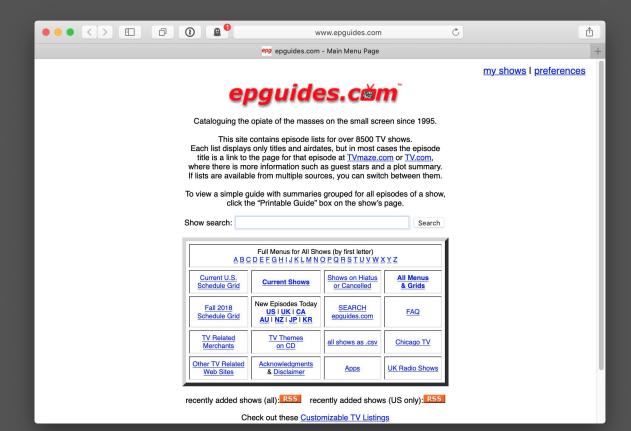
"Facial Analysis"?



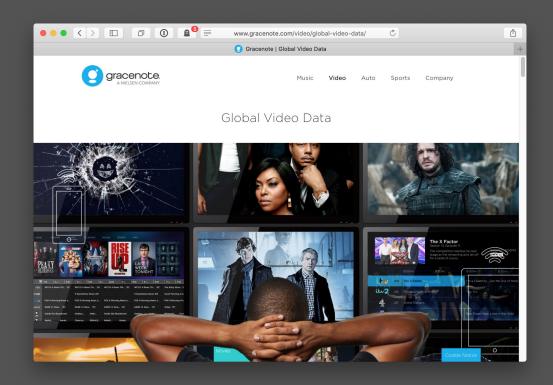


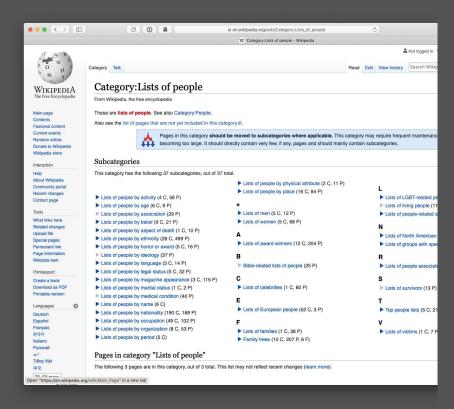


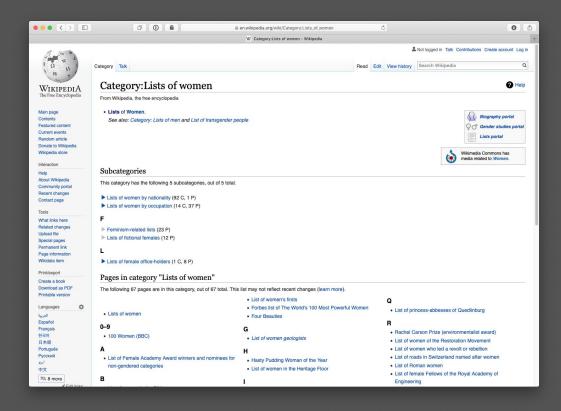
Prototype Data

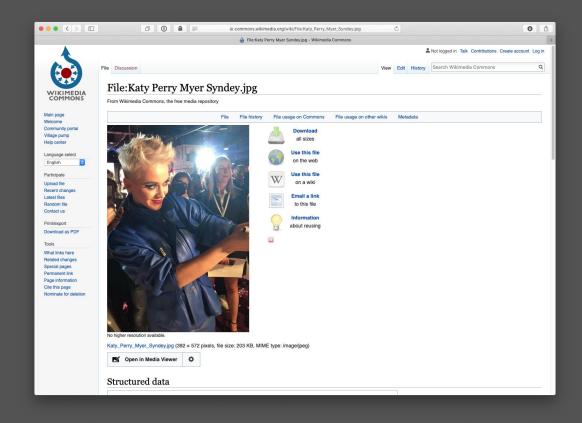


Global Standard

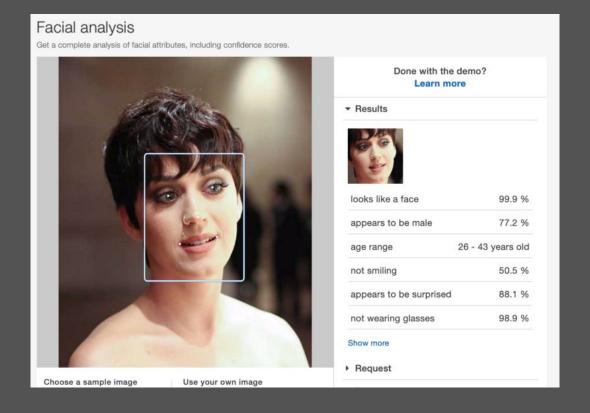




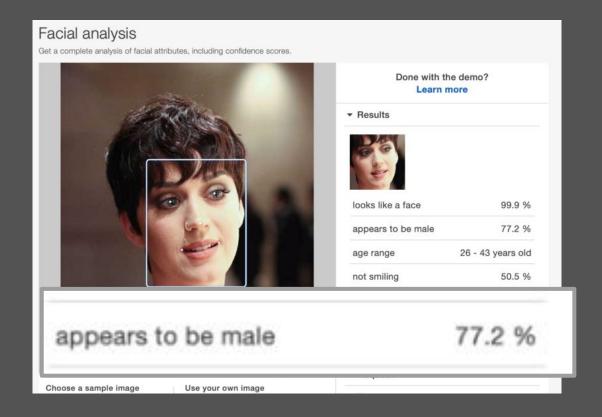


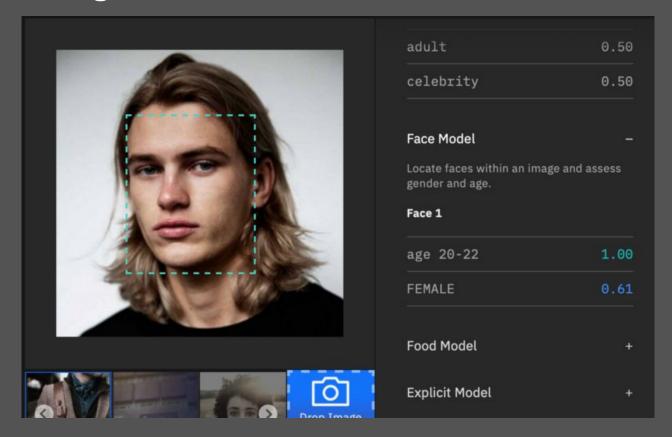


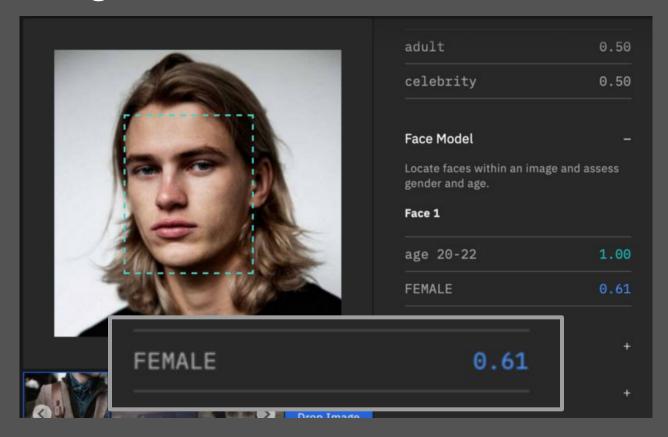
Woman with Short Hair

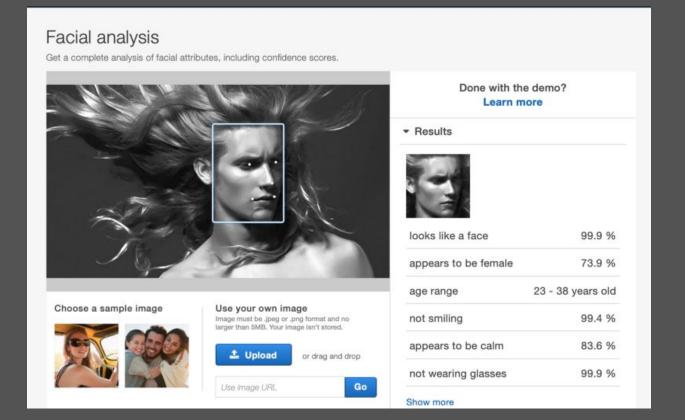


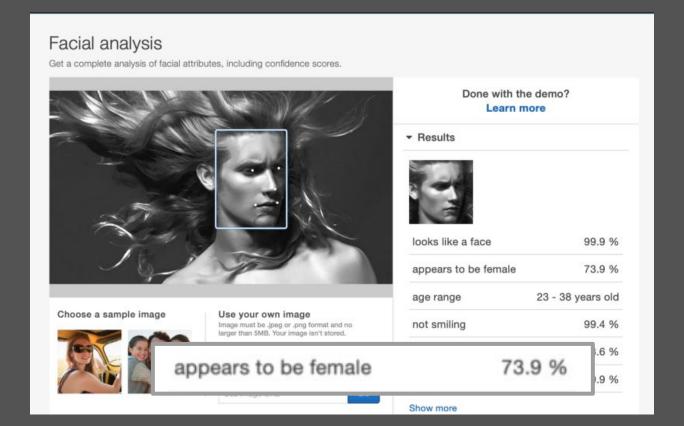
Woman with Short Hair

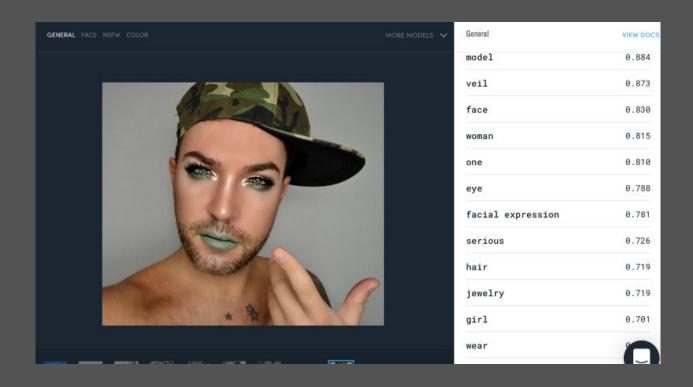


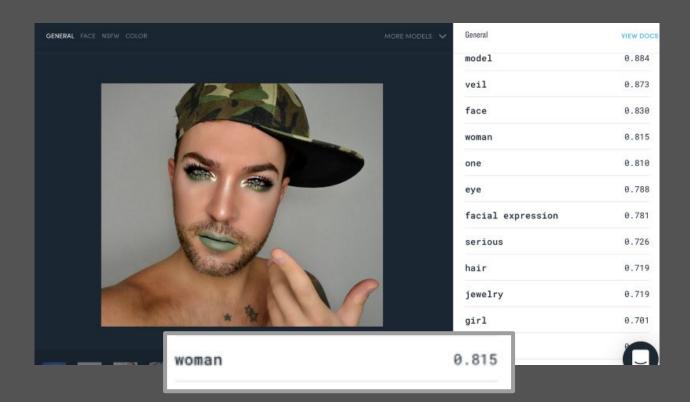












Facial analysis

Get a complete analysis of facial attributes, including confidence scores.

Choose a sample image

Use your own image

Image must be .jpeg or .png format and no larger than 5MB. Your image isn't stored.

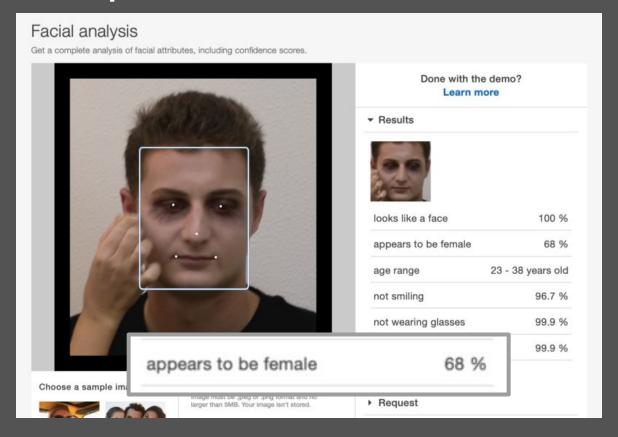
Done with the demo? Learn more

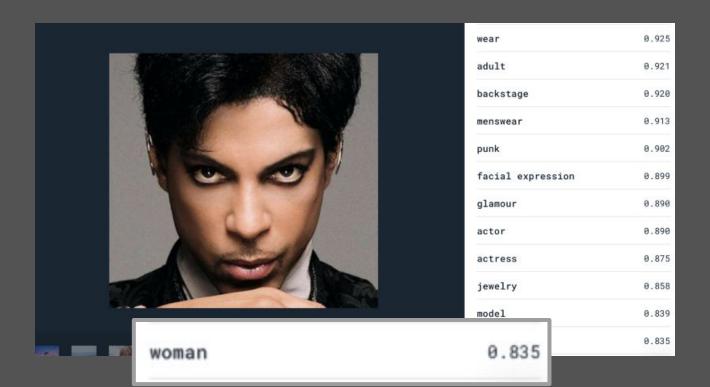
▼ Results

looks like a face	100 %		
appears to be female	68 %		
age range	23 - 38 years old		
not smiling	96.7 %		
not wearing glasses	99.9 %		
not wearing sunglasses	99.9 %		

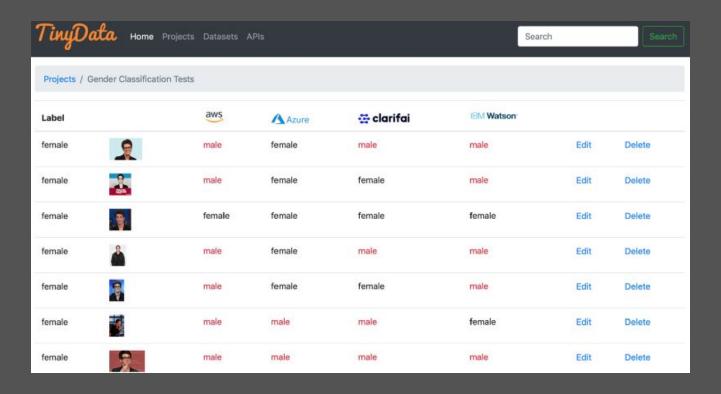
Show more

Request





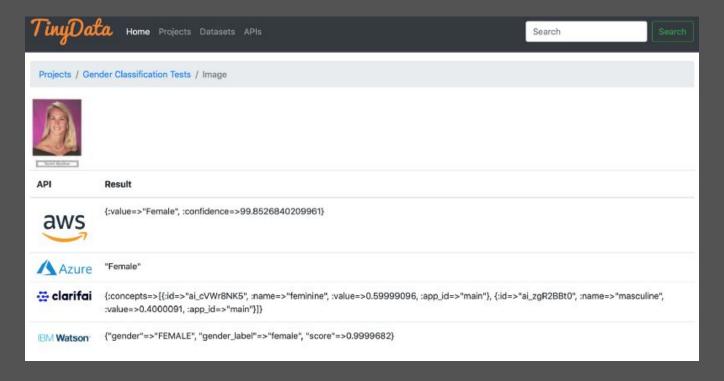
Automating Data Generation + Testing



Automating Data Generation + Testing

female	A	female	female	female	female	Edit	Delete
female		male	female	male	female	Edit	Delete
female		female	female	male	female	Edit	Delete
female	9	male	female	female	male	Edit	Delete
female	2	male	female	female	female	Edit	Delete
female	3	female	male	male	male	Edit	Delete
female	3	male	male	male	female	Edit	Delete
female		female	female	female	female	Edit	Delete
female		female		female	female	Edit	Delete
female	G	female		female	female	Edit	Delete

Tracking Results Over Time



Takeaways

Even the best trained commercial ML systems are far from perfect

Systems return different results over time as new versions get deployed

Cumbersome & intractable to test without tools & automation

Scaling Data Products as a Startup

Bootstrap servers with commercial APIs

Bootstrap data with open web, public & synthetic datasets

Automation is startups' best friend

Questions / Comments

edwin@tinydata.co

Twitter: @edwin

