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To reduce the global burden of disease 
through the most actionable healthcare map

Our Mission



Komodo Health™ Integrity
Our Map Links Activities of the Entire Healthcare System

Payers
• 500+ payers

Providers
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  doctors / nurses
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  hospitals / clinics 
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Variation in data size and cadency

Source 1

External 

Source 2

Source 3

Source 4

Source 5

● Public and proprietary sources
● Size of data

○ From MBs to TBs

● Refresh cadencies:
○ Daily
○ Weekly
○ Monthly
○ Quarterly
○ Bi-annual
○ One-off

■ Historical drop followed by 
incremental additions



Variation in access to raw data

Source 1
SFTP

External 

Source 2
AWS S3

Source 3
API

Source 4
Download

Source 5
Hard drive

● Public and proprietary sources
● Size of data

○ From MBs to TBs

● Refresh cadencies:
○ Daily
○ Weekly
○ Monthly
○ Quarterly
○ Bi-annual
○ One-off

■ Historical drop followed by 
incremental additions

● Several interfaces for data extraction

Landed
Original format 



Variation in file formats

Source 1
SFTP

External 

Source 2
AWS S3

Source 3
API

Source 4
Download

Source 5
Hard drive

● Original file formats
○ CSV
○ XML
○ SAS
○ Fixed-width
○ Parquet

● Various compression formats
● Encrypted data

Landed
Original format 

Raw
Parquet 



Cover several aspects of healthcare system

Source 1

External 

Source 2

Source 3

Source 4

Source 5

● Several datasets covering a 
single aspect of healthcare
○ Different schemas
○ Different conventions

● Need to transform to 
common schema

Landed
Original format 

Raw
Parquet 

Transformed
Parquet 



Security and privacy

Source 1

External 

Source 2

Source 3

Source 4

Source 5

Landed
Original format 

Raw
Parquet 

Transformed
Parquet  ● Security and privacy

○ Access control
○ Data encryption
○ Compliances



Prior to centralized data ingestion system

● Eternal question: What is the priority?
○ Scalability, maintainability, robustness, reliability
○ Rapid development
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Prior to centralized data ingestion system

● Eternal question: What is the priority?
○ Scalability, maintainability, robustness, reliability
○ Rapid development  ← startup choice

■ Provide value to customers and show progress to investors
■ React to changing requirements

● Consequences:
○ Specialized pipelines
○ Manual operations
○ Variation in technologies and how to use them
○ Less reusable code



Why did we build a centralized ingestion system?

● Previous approach hard to maintain
○ Overhead in onboarding engineers to processes
○ Accumulation of manual tasks

● Project to integrate a few new data sources
○ Daily increments
○ Similar data sources
○ Opportunity: build system for these sources and migrate other sources later

● Pros of in-house implementation
○ Flexibility
○ Integrate with our tech stack

■ Leverage previous experience
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Overview of the system infrastructure

● Airflow
○ Organize workflows
○ Automation
○ Alerting

● Spark
○ Distributed processing

● Kubernetes
○ Container management

● AWS
○ EC2 - servers
○ S3 - store data



Airflow: Schedule workflows

Source 1
SFTP

External 

Source 2
AWS S3

Source 3
API

Source 4
Download

Pros:
● DAGs written in Python
● Hooks to integrate with sources
● Operators for common tasks
● Alert on success/failure
● Monitoring
● Parallelize DAGs and tasks
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Airflow: Schedule workflows

Source 1
SFTP

External 

Source 2
AWS S3

Source 3
API

Source 4
Download

Pros:
● DAGs written in Python
● Hooks to integrate with sources
● Operators for common tasks
● Alert on success/failure
● Monitoring
● Parallelize DAGs and tasks

Cons:
● Had to customize hooks and 

operators
○ Handling credentials
○ Needing additional S3 

metadata

Landed
Original format 

Raw
Parquet 

Transformed
Parquet 



Spark: Distributed processing

Source 1

External 

Source 2

Pros:
● Reliable
● Python and Scala APIs

Cons:
● Performance tuning can be tricky

Landed
Original format 

Raw
Parquet 

Transformed
Parquet 



Kubernetes: Container management

Node Node

Pod

Airflow 
Scheduler

Pod

Pod

Airflow 
WebUI

Spark 
Master

Pros:
● Environments isolated to namespaces
● Node selectors for resource allocation

○ Nodes labeled based on the Auto 
Scaling Groups instances are tied to

● Self-healing of pods!

Cons:
● Occasional stability issues

○ Networking issues
● Difficult to troubleshoot



So far so good

Scheduled execution

Parallelized tasks

Scalable resources

Alerting

Monitoring

Resilient infrastructure

Isolated environments
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Infra limitation: Spark scaled manually

Node Node

Pod

Big spikes in resource usage

● Wasteful to keep scaled up
● Scaling down is tricky
● Currently run big workloads on separate cluster

○ Manual operation :(

Spark 
Worker

Pod

Spark 
Worker



Infra limitation: Spark scaled manually

Node Node

Pod

Big spikes in resource usage

● Wasteful to keep scaled up 
● Scaling down is tricky
● Currently run big workloads on separate cluster

○ Manual operation :(

Two Spark workers on the same node 
resulted in double counting Spark resources

Spark 
Worker

Pod

Spark 
Worker

Pod

Spark 
Worker



Automatic scaling under development

Node Node

Pod

Big spikes in resource usage

● Wasteful to keep scaled up 
● Scaling down is tricky
● Currently run big workloads on separate cluster

○ Manual operation :(

Future solution:

● Run Spark directly on Kubernetes
○ Introduced in Spark 2.4.0 for client mode

● K8s autoscaler to scale nodes 

Spark 
Executor

Pod

Spark 
Executor

PodPod

Spark 
Executor

Spark 
Executor



Infra limitation: Scheduler a single point of failure

Node Node

Using local executor 

● Tasks executed as subprocesses of scheduler
● Scale resources vertically
● Self-healing on failures? It depends...

Pod

Airflow 
Scheduler

File transfer

Spark 
Driver

Spark 
Driver



Infra limitation: Scheduler a single point of failure

Node Node

Using local executor

● Tasks executed as subprocesses of scheduler
● Scale resources vertically
● Self-healing on failures? It depends...

Issues in self-healing:

● Inconsistency in Airflow database
● Dependency on lost local file
● Pod evicted due to disk pressure

Pod

Airflow 
Scheduler

File transfer

Spark 
Driver

Spark 
Driver



Why are you using local executor?

Node Node

It has served us well, so far

● It was enough when we started
● Did not want to add complexity

Pod

Airflow 
Scheduler

File transfer

Spark 
Driver

Spark 
Driver



Automatic scaling under development, again

Node Node

It has served us well, so far

● It was enough when we started
● Did not want to add complexity

Future solution:

● Kubernetes executor
○ Introduced in Airflow 1.10.0

● K8s autoscaler to scale nodesPod

Airflow 
Scheduler

Pod

Spark 
Driver

Pod

Spark 
Driver

Pod

File transfer
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Beyond infra - Scaling the ingestion processes 

● Our data ingestion priorities:
○ Speed of data delivery
○ Data quality
○ Security and privacy

● Bottleneck is engineering time spent on integrating new data sources
○ Tools to simplify processes



Early and fast iterations

Source 1

External 

Source 2

Data profiling tool:

● Recognize columns
○ Simplifies commonization

● Validate raw data
○ Communicate issues with 

source
○ Compliance risks

Landed
Original format 

Raw
Parquet 

Transformed
Parquet 

Data 
Profiling

Commonize



Avoid repeated work

Source 1

External 

Source 2

Commonization tool:

● Similar data to common schema
● Based on configuration file

○ Very little code needed

Landed
Original format 

Raw
Parquet 

Transformed
Parquet 

Data 
Profiling

Commonize



Emphasis on data quality

Source 1

External 

Source 2

Data validation tool:

● Validate against data standard
○ Catch bugs in commonization
○ Improve data profiling
○ Communicate issues with 

source

Landed
Original format 

Raw
Parquet 

Transformed
Parquet 

Data 
Profiling

Commonize

Data 
Validation



Conclusions

❖ Architecture with Airflow, Spark and Kubernetes very flexible for complex 
data ingestion

❖ Lots of nuances with these technologies and their interactions

❖ These technologies are constantly improving

❖ Not just infra that needs to scale, but also the processes

❖ Make sure you know your specific priorities



Thank you for your attention!

❖ Architecture with Airflow, Spark and Kubernetes very flexible for complex 
data ingestion

❖ Lots of nuances with these technologies and their interactions

❖ These technologies are constantly improving

❖ Not just infra that needs to scale, but also the processes

❖ Make sure you know your specific priorities


