

Scalable Data Ingestion Architecture Using Airflow and Spark

Johannes Leppä Data Engineer johannes.leppa@komodohealth.com

April 17, 2019 Data Council San Francisco, CA

- Komodo Health
- Data Ingestion Challenges
- Data Ingestion System Architecture
- Lessons Learned and Future Developments
- Scaling Processes
- Conclusions

Our Mission

To reduce the global burden of disease through the most actionable healthcare map

Komodo Health[™] Integrity Our Map Links Activities of the Entire Healthcare System



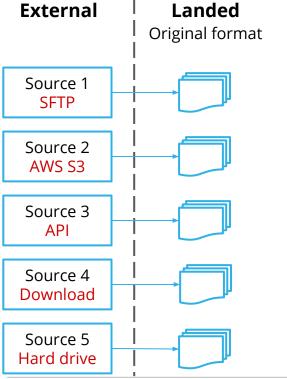
- Komodo Health
- Data Ingestion Challenges
- Data Ingestion System Architecture
- Lessons Learned and Future Developments
- Scaling Processes
- Conclusions

Variation in data size and cadency

omodohealth™

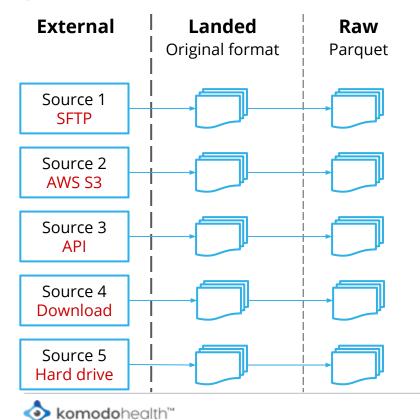
External	 Public and proprietary sources Size of data
Source 1	● Size Of Uata ○ From MBs to TBs
	Refresh cadencies:
Source 2	○ Daily
	 Weekly
Source 3	• Monthly
	 Quarterly
Source 4	o Bi-annual
	• One-off
Source 5	 Historical drop followed by incremental additions

Variation in access to raw data



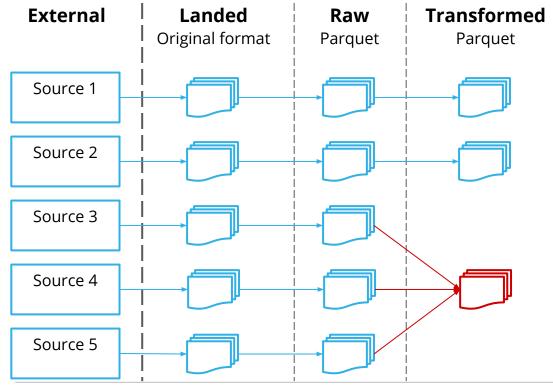
- Public and proprietary sources
- Size of data
 - From MBs to TBs
- Refresh cadencies:
 - Daily
 - Weekly
 - Monthly
 - Quarterly
 - Bi-annual
 - One-off
 - Historical drop followed by incremental additions
- Several interfaces for data extraction

Variation in file formats



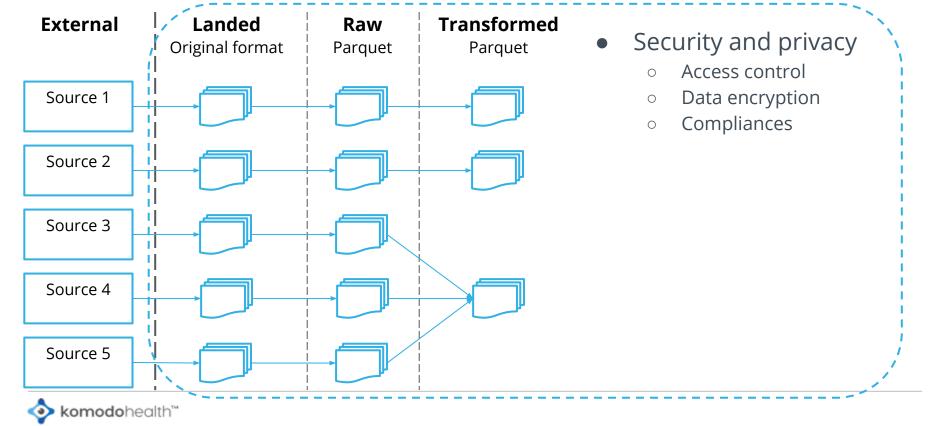
- Original file formats
 - CSV
 - XML
 - SAS
 - Fixed-width
 - Parquet
- Various compression formats
- Encrypted data

Cover several aspects of healthcare system



- Several datasets covering a single aspect of healthcare
 - Different schemas
 - Different conventions
- Need to transform to common schema

Security and privacy



Prior to centralized data ingestion system

- Eternal question: What is the priority?
 - Scalability, maintainability, robustness, reliability
 - Rapid development

Prior to centralized data ingestion system

- Eternal question: What is the priority?
 - Scalability, maintainability, robustness, reliability
 - - Provide value to customers and show progress to investors
 - React to changing requirements

Prior to centralized data ingestion system

- Eternal question: What is the priority?
 - Scalability, maintainability, robustness, reliability
 - - Provide value to customers and show progress to investors
 - React to changing requirements

• Consequences:

- Specialized pipelines
- Manual operations
- Variation in technologies and how to use them
- Less reusable code

Why did we build a centralized ingestion system?

• Previous approach hard to maintain

- Overhead in onboarding engineers to processes
- Accumulation of manual tasks
- Project to integrate a few new data sources
 - Daily increments
 - Similar data sources
 - **Opportunity**: build system for these sources and migrate other sources later
- Pros of in-house implementation
 - Flexibility
 - Integrate with our tech stack
 - Leverage previous experience

- Komodo Health
- Data Ingestion Challenges
- Data Ingestion System Architecture
- Lessons Learned and Future Developments
- Scaling Processes
- Conclusions

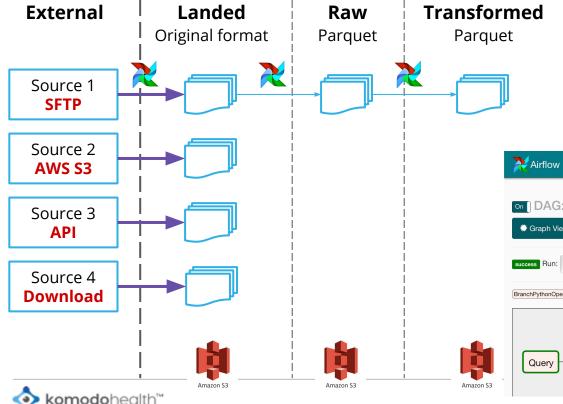
Overview of the system infrastructure

• Airflow

- Organize workflows
- Automation
- Alerting
- Spark
 - Distributed processing
- Kubernetes
 - Container management
- AWS
 - EC2 servers
 - S3 store data

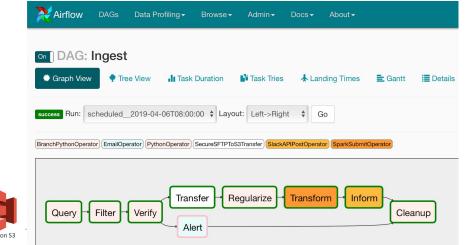
kubernetes

Airflow: Schedule workflows

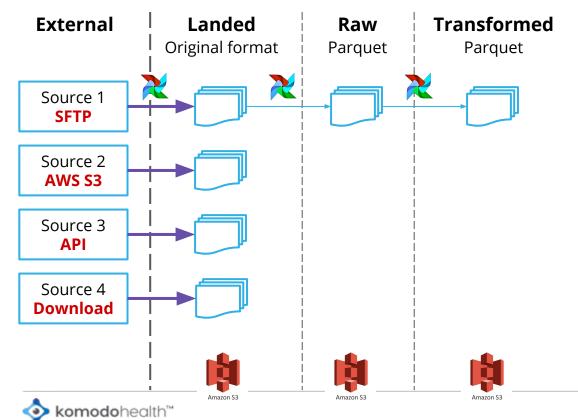


Pros:

- DAGs written in Python
- **Hooks** to integrate with sources
- **Operators** for common tasks
- Alert on success/failure
- Monitoring
- Parallelize DAGs and tasks



Airflow: Schedule workflows



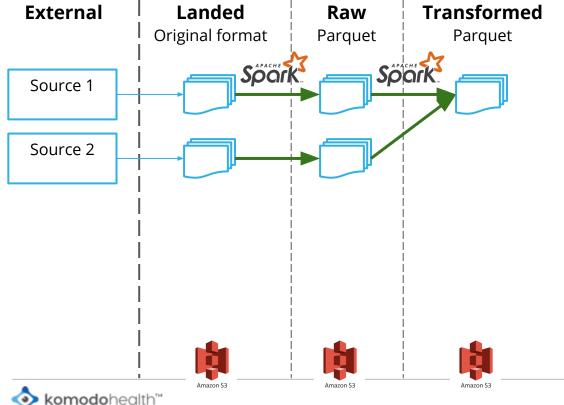
Pros:

- DAGs written in Python
- Hooks to integrate with sources
- **Operators** for common tasks
- Alert on success/failure
- Monitoring
- Parallelize DAGs and tasks

Cons:

- Had to customize hooks and operators
 - Handling credentials
 - Needing additional S3 metadata

Spark: Distributed processing



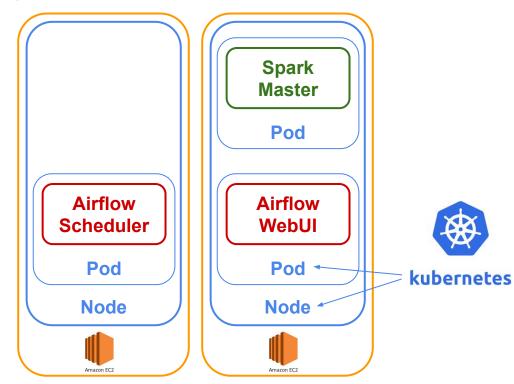
Pros:

- Reliable
- Python and Scala APIs

Cons:

• Performance tuning can be tricky

Kubernetes: Container management



Pros:

- Environments isolated to namespaces
- Node selectors for resource allocation
 - Nodes labeled based on the Auto
 Scaling Groups instances are tied to
- Self-healing of pods!

Cons:

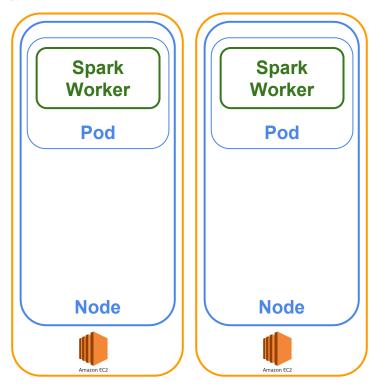
- Occasional stability issues
 - Networking issues
- Difficult to troubleshoot

So far so good

- Scheduled execution
- ☑ Parallelized tasks
- Scalable resources
- ☑ Alerting
- Monitoring
- ☑ Resilient infrastructure
- ☑ Isolated environments

- Komodo Health
- Data Ingestion Challenges
- Data Ingestion System Architecture
- Lessons Learned and Future Developments
- Scaling Processes
- Conclusions

Infra limitation: Spark scaled manually

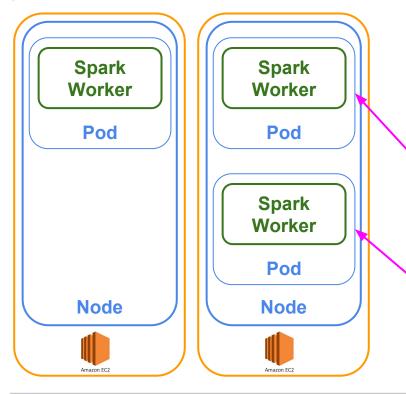


nodohealth™

Big spikes in resource usage

- Wasteful to keep scaled up
- Scaling down is tricky
- Currently run big workloads on separate cluster
 - Manual operation :(

Infra limitation: Spark scaled manually

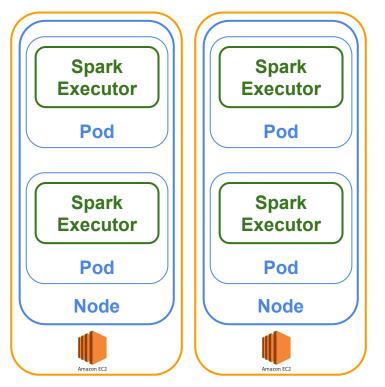


Big spikes in resource usage

- Wasteful to keep scaled up
- Scaling down is tricky
- Currently run big workloads on separate cluster
 - Manual operation :(

Two Spark workers on the same node resulted in double counting Spark resources

Automatic scaling under development



nodohealth™

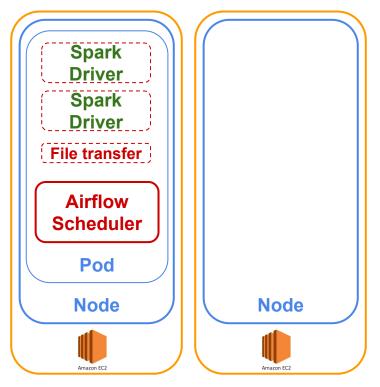
Big spikes in resource usage

- Wasteful to keep scaled up
- Scaling down is tricky
- Currently run big workloads on separate cluster
 - Manual operation :(

Future solution:

- Run Spark directly on Kubernetes
 - Introduced in Spark 2.4.0 for client mode
- K8s autoscaler to scale nodes

Infra limitation: Scheduler a single point of failure

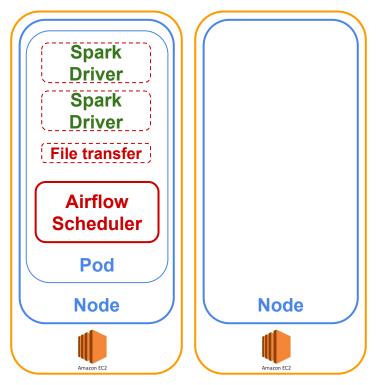


modohealth™

Using local executor

- Tasks executed as subprocesses of scheduler
- Scale resources vertically
- Self-healing on failures? It depends...

Infra limitation: Scheduler a single point of failure



nodohealth™

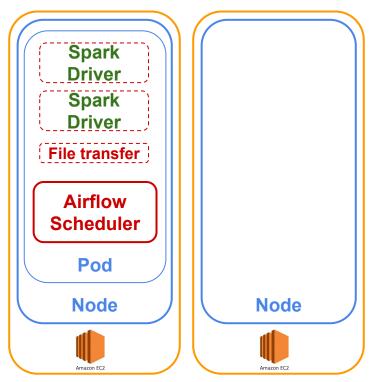
Using local executor

- Tasks executed as subprocesses of scheduler
- Scale resources vertically
- Self-healing on failures? It depends...

Issues in self-healing:

- Inconsistency in Airflow database
- Dependency on lost local file
- Pod evicted due to disk pressure

Why are you using local executor?

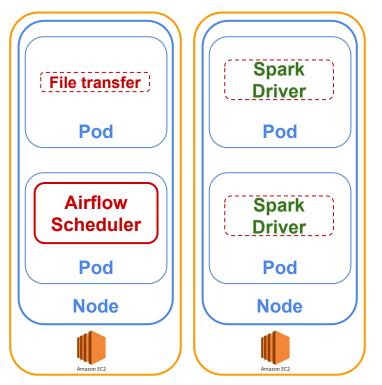


modohealth™

It has served us well, so far

- It was enough when we started
- Did not want to add complexity

Automatic scaling under development, again



It has served us well, so far

- It was enough when we started
- Did not want to add complexity

Future solution:

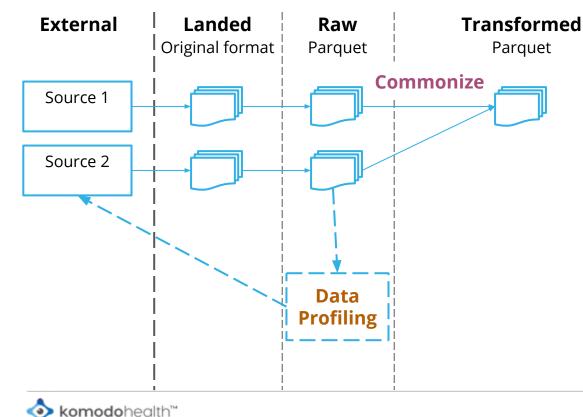
- Kubernetes executor
 - Introduced in Airflow 1.10.0
- K8s autoscaler to scale nodes

- Komodo Health
- Data Ingestion Challenges
- Data Ingestion System Architecture
- Lessons Learned and Future Developments
- Scaling Processes
- Conclusions

Beyond infra - Scaling the ingestion processes

- Our data ingestion priorities:
 - Speed of data delivery
 - Data quality
 - Security and privacy
- Bottleneck is engineering time spent on integrating new data sources
 - Tools to simplify processes

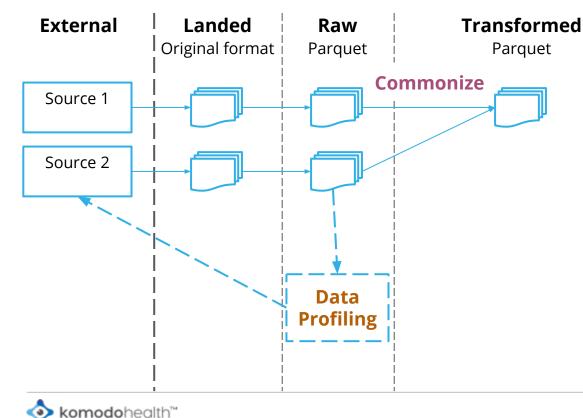
Early and fast iterations



Data profiling tool:

- Recognize columns
 - Simplifies commonization
- Validate raw data
 - Communicate issues with source
 - Compliance risks

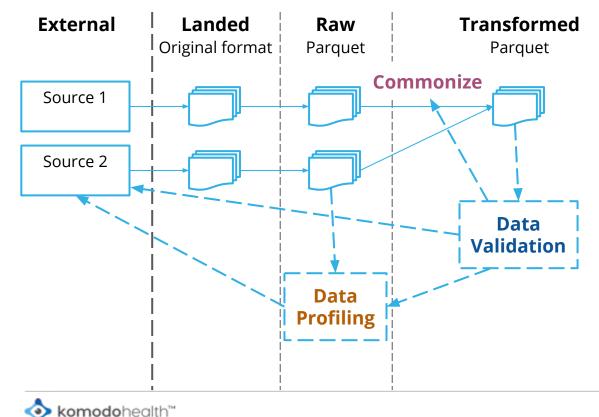
Avoid repeated work



Commonization tool:

- Similar data to common schema
- Based on configuration file
 - \circ Very little code needed

Emphasis on data quality



Data validation tool:

- Validate against data standard
 - Catch bugs in commonization
 - Improve data profiling
 - Communicate issues with source

Conclusions

- Architecture with Airflow, Spark and Kubernetes very flexible for complex data ingestion
- Lots of nuances with these technologies and their interactions
- These technologies are constantly improving
- Not just infra that needs to scale, but also the processes
- Make sure you know your specific priorities

Thank you for your attention!

- Architecture with Airflow, Spark and Kubernetes very flexible for complex data ingestion
- Lots of nuances with these technologies and their interactions
- These technologies are constantly improving
- Not just infra that needs to scale, but also the processes
- Make sure you know your specific priorities

