
Scalable Data Ingestion Architecture Using
Airflow and Spark

Johannes Leppä
Data Engineer

johannes.leppa@komodohealth.com

April 17, 2019
Data Council
San Francisco, CA

Agenda

❖ Komodo Health

❖ Data Ingestion Challenges

❖ Data Ingestion System Architecture

❖ Lessons Learned and Future Developments

❖ Scaling Processes

❖ Conclusions

To reduce the global burden of disease
through the most actionable healthcare map

Our Mission

Komodo Health™ Integrity
Our Map Links Activities of the Entire Healthcare System

Payers
• 500+ payers

Providers
• 3.5 M
 doctors / nurses

Institutions
• 450K
 hospitals / clinics

Biopharma
• $20B payments

Clinical Trials
• 100k+ Clinical Trials

Scientific Publications
• 20M publications

Patient-Centric
AI powered linkages

Agenda

❖ Komodo Health

❖ Data Ingestion Challenges

❖ Data Ingestion System Architecture

❖ Lessons Learned and Future Developments

❖ Scaling Processes

❖ Conclusions

Variation in data size and cadency

Source 1

External

Source 2

Source 3

Source 4

Source 5

● Public and proprietary sources
● Size of data

○ From MBs to TBs

● Refresh cadencies:
○ Daily
○ Weekly
○ Monthly
○ Quarterly
○ Bi-annual
○ One-off

■ Historical drop followed by
incremental additions

Variation in access to raw data

Source 1
SFTP

External

Source 2
AWS S3

Source 3
API

Source 4
Download

Source 5
Hard drive

● Public and proprietary sources
● Size of data

○ From MBs to TBs

● Refresh cadencies:
○ Daily
○ Weekly
○ Monthly
○ Quarterly
○ Bi-annual
○ One-off

■ Historical drop followed by
incremental additions

● Several interfaces for data extraction

Landed
Original format

Variation in file formats

Source 1
SFTP

External

Source 2
AWS S3

Source 3
API

Source 4
Download

Source 5
Hard drive

● Original file formats
○ CSV
○ XML
○ SAS
○ Fixed-width
○ Parquet

● Various compression formats
● Encrypted data

Landed
Original format

Raw
Parquet

Cover several aspects of healthcare system

Source 1

External

Source 2

Source 3

Source 4

Source 5

● Several datasets covering a
single aspect of healthcare
○ Different schemas
○ Different conventions

● Need to transform to
common schema

Landed
Original format

Raw
Parquet

Transformed
Parquet

Security and privacy

Source 1

External

Source 2

Source 3

Source 4

Source 5

Landed
Original format

Raw
Parquet

Transformed
Parquet ● Security and privacy

○ Access control
○ Data encryption
○ Compliances

Prior to centralized data ingestion system

● Eternal question: What is the priority?
○ Scalability, maintainability, robustness, reliability
○ Rapid development

Prior to centralized data ingestion system

● Eternal question: What is the priority?
○ Scalability, maintainability, robustness, reliability
○ Rapid development ← startup choice

■ Provide value to customers and show progress to investors
■ React to changing requirements

Prior to centralized data ingestion system

● Eternal question: What is the priority?
○ Scalability, maintainability, robustness, reliability
○ Rapid development ← startup choice

■ Provide value to customers and show progress to investors
■ React to changing requirements

● Consequences:
○ Specialized pipelines
○ Manual operations
○ Variation in technologies and how to use them
○ Less reusable code

Why did we build a centralized ingestion system?

● Previous approach hard to maintain
○ Overhead in onboarding engineers to processes
○ Accumulation of manual tasks

● Project to integrate a few new data sources
○ Daily increments
○ Similar data sources
○ Opportunity: build system for these sources and migrate other sources later

● Pros of in-house implementation
○ Flexibility
○ Integrate with our tech stack

■ Leverage previous experience

Agenda

❖ Komodo Health

❖ Data Ingestion Challenges

❖ Data Ingestion System Architecture

❖ Lessons Learned and Future Developments

❖ Scaling Processes

❖ Conclusions

Overview of the system infrastructure

● Airflow
○ Organize workflows
○ Automation
○ Alerting

● Spark
○ Distributed processing

● Kubernetes
○ Container management

● AWS
○ EC2 - servers
○ S3 - store data

Airflow: Schedule workflows

Source 1
SFTP

External

Source 2
AWS S3

Source 3
API

Source 4
Download

Pros:
● DAGs written in Python
● Hooks to integrate with sources
● Operators for common tasks
● Alert on success/failure
● Monitoring
● Parallelize DAGs and tasks

Landed
Original format

Raw
Parquet

Transformed
Parquet

Airflow: Schedule workflows

Source 1
SFTP

External

Source 2
AWS S3

Source 3
API

Source 4
Download

Pros:
● DAGs written in Python
● Hooks to integrate with sources
● Operators for common tasks
● Alert on success/failure
● Monitoring
● Parallelize DAGs and tasks

Cons:
● Had to customize hooks and

operators
○ Handling credentials
○ Needing additional S3

metadata

Landed
Original format

Raw
Parquet

Transformed
Parquet

Spark: Distributed processing

Source 1

External

Source 2

Pros:
● Reliable
● Python and Scala APIs

Cons:
● Performance tuning can be tricky

Landed
Original format

Raw
Parquet

Transformed
Parquet

Kubernetes: Container management

Node Node

Pod

Airflow
Scheduler

Pod

Pod

Airflow
WebUI

Spark
Master

Pros:
● Environments isolated to namespaces
● Node selectors for resource allocation

○ Nodes labeled based on the Auto
Scaling Groups instances are tied to

● Self-healing of pods!

Cons:
● Occasional stability issues

○ Networking issues
● Difficult to troubleshoot

So far so good

Scheduled execution

Parallelized tasks

Scalable resources

Alerting

Monitoring

Resilient infrastructure

Isolated environments

Agenda

❖ Komodo Health

❖ Data Ingestion Challenges

❖ Data Ingestion System Architecture

❖ Lessons Learned and Future Developments

❖ Scaling Processes

❖ Conclusions

Infra limitation: Spark scaled manually

Node Node

Pod

Big spikes in resource usage

● Wasteful to keep scaled up
● Scaling down is tricky
● Currently run big workloads on separate cluster

○ Manual operation :(

Spark
Worker

Pod

Spark
Worker

Infra limitation: Spark scaled manually

Node Node

Pod

Big spikes in resource usage

● Wasteful to keep scaled up
● Scaling down is tricky
● Currently run big workloads on separate cluster

○ Manual operation :(

Two Spark workers on the same node
resulted in double counting Spark resources

Spark
Worker

Pod

Spark
Worker

Pod

Spark
Worker

Automatic scaling under development

Node Node

Pod

Big spikes in resource usage

● Wasteful to keep scaled up
● Scaling down is tricky
● Currently run big workloads on separate cluster

○ Manual operation :(

Future solution:

● Run Spark directly on Kubernetes
○ Introduced in Spark 2.4.0 for client mode

● K8s autoscaler to scale nodes

Spark
Executor

Pod

Spark
Executor

PodPod

Spark
Executor

Spark
Executor

Infra limitation: Scheduler a single point of failure

Node Node

Using local executor

● Tasks executed as subprocesses of scheduler
● Scale resources vertically
● Self-healing on failures? It depends...

Pod

Airflow
Scheduler

File transfer

Spark
Driver

Spark
Driver

Infra limitation: Scheduler a single point of failure

Node Node

Using local executor

● Tasks executed as subprocesses of scheduler
● Scale resources vertically
● Self-healing on failures? It depends...

Issues in self-healing:

● Inconsistency in Airflow database
● Dependency on lost local file
● Pod evicted due to disk pressure

Pod

Airflow
Scheduler

File transfer

Spark
Driver

Spark
Driver

Why are you using local executor?

Node Node

It has served us well, so far

● It was enough when we started
● Did not want to add complexity

Pod

Airflow
Scheduler

File transfer

Spark
Driver

Spark
Driver

Automatic scaling under development, again

Node Node

It has served us well, so far

● It was enough when we started
● Did not want to add complexity

Future solution:

● Kubernetes executor
○ Introduced in Airflow 1.10.0

● K8s autoscaler to scale nodesPod

Airflow
Scheduler

Pod

Spark
Driver

Pod

Spark
Driver

Pod

File transfer

Agenda

❖ Komodo Health

❖ Data Ingestion Challenges

❖ Data Ingestion System Architecture

❖ Lessons Learned and Future Developments

❖ Scaling Processes

❖ Conclusions

Beyond infra - Scaling the ingestion processes

● Our data ingestion priorities:
○ Speed of data delivery
○ Data quality
○ Security and privacy

● Bottleneck is engineering time spent on integrating new data sources
○ Tools to simplify processes

Early and fast iterations

Source 1

External

Source 2

Data profiling tool:

● Recognize columns
○ Simplifies commonization

● Validate raw data
○ Communicate issues with

source
○ Compliance risks

Landed
Original format

Raw
Parquet

Transformed
Parquet

Data
Profiling

Commonize

Avoid repeated work

Source 1

External

Source 2

Commonization tool:

● Similar data to common schema
● Based on configuration file

○ Very little code needed

Landed
Original format

Raw
Parquet

Transformed
Parquet

Data
Profiling

Commonize

Emphasis on data quality

Source 1

External

Source 2

Data validation tool:

● Validate against data standard
○ Catch bugs in commonization
○ Improve data profiling
○ Communicate issues with

source

Landed
Original format

Raw
Parquet

Transformed
Parquet

Data
Profiling

Commonize

Data
Validation

Conclusions

❖ Architecture with Airflow, Spark and Kubernetes very flexible for complex
data ingestion

❖ Lots of nuances with these technologies and their interactions

❖ These technologies are constantly improving

❖ Not just infra that needs to scale, but also the processes

❖ Make sure you know your specific priorities

Thank you for your attention!

❖ Architecture with Airflow, Spark and Kubernetes very flexible for complex
data ingestion

❖ Lots of nuances with these technologies and their interactions

❖ These technologies are constantly improving

❖ Not just infra that needs to scale, but also the processes

❖ Make sure you know your specific priorities

