
Running Apache Airflow
reliably with Kubernetes...

and other open source software

April 17, 2019

Data Council

San Francisco, CA

Greg Neiheisel, CTO

On Deck
● Quick Airflow / Kubernetes overview

● Running Airflow at Scale

● Major system design considerations

● Lessons and best practices we’ve learned along the way

What is Apache Airflow?
● A task scheduler written in Python to programatically author, schedule, and

monitor dependency driven workflows (DAGs)

○ Pluggable architecture, focused on ETL, ML use-cases

○ Lots of existing building blocks

● Top-level Apache Project

○ 11,000+ stars on github

○ 6,000+ commits

○ 700+ contributors

Airflow core concepts

● DAGs - created in code, typically

associated with a cron schedule

● DAG Runs - typically execution of

a dag for a given execution date

● Task Instances - represents an

execution of a node in the DAG

Times are changing
● Wider Use Cases

○ ETL, ML, Reporting, Data Integrity

● Higher Usage

○ More teams with different skill sets and goals for

Airflow usage

○ More DAGs running more frequently

● Stricter SLAs

● More complex core components (executors,

operators, etc)

○ Kubernetes, Mesos, Spark, etc.

● Immutable infrastructure

10 data engineers

240+ active DAGs

5400+ tasks per day

https://speakerdeck.com/vananth22/operating-data-pipeline-with-airflow-at-slack?slide=6

...as of April ‘18…

Airflow is a highly-available, mission-critical service
● Automated Airflow deployments

● Continuous delivery

● Support 100s of users and 1,000s of tasks per day

● Security

● Access controls

● Observability (Metrics / Logs)

● Autoscaling / Scale to zero-ish

Kubernetes

Kubernetes is a portable, extensible

open-source platform for managing

containerized workloads and services, that

facilitates both declarative configuration and

automation

Kubernetes

Applications are broken into

smaller, independent pieces

and can be deployed and

managed dynamically

Kubernetes

● Pod - One or more colocated containers, share volumes, ports

● Deployment - Higher level abstraction, manages pods, replica sets

● Stateful Set - Similar to Deployment, except each replica gets a stable hostname

and can mount persistent volumes

● Daemon Set - Replica pods deployed to each node

● Namespace - Virtual cluster backed by the same physical cluster

Declarative Service Definition with Kubernetes / Helm

Helm helps you manage Kubernetes

applications — Helm Charts helps you

define, install, and upgrade even the

most complex Kubernetes application.

https://github.com/astronomerio/helm.astronomer.io/tree/master/charts/airflow

helm install -n airflow-prod charts/airflow

Airflow Executors

A pluggable way to scale out Airflow workloads. Responsible for running

airflow run ${dag_id} ${task_id} ${execution_date}

somewhere.

Executors - Sequential/Local

● Fork off and run tasks in subprocess

● Good for simple workloads

● Eventually things need to scale out

Executors - Local Executor

Airflow Webserver Airflow Scheduler

All jobs execute here

Executors - Celery Executor
● Distributed Task Queue

● Redis, RabbitMQ, etc dependency

● Configure number of workers

○ Kubernetes HorizontalPodAutoscaler

● Configure worker size

○ Kubernetes resource requests / limits

Executors - Celery Executor

Airflow Workers

Airflow Webserver Airflow Scheduler

Redis

Jobs are distributed across these

Executors - Kubernetes Executor
● Scale to zero / near-zero

● Each task runs in a new pod

○ Configurable resource requests (cpu/mem)

● Scheduler subscribes to Kubernetes event stream

● Pods run to completion

● Straightforward and natural

● DAG distribution

○ Git clone with init container for each pod

○ Mount volume with DAGs

○ Ensure the image already contains the DAG code

Executors - Kubernetes Executor

Airflow Webserver Airflow Scheduler

Executors - Kubernetes Executor

Airflow Webserver Airflow Scheduler

Taskairflow run ${dag_id} ${task_id} ${execution_date}

Request Pod

Launch Pod

Executors - Kubernetes Executor

Airflow Webserver Airflow Scheduler

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

How do we deploy DAG updates to a

running environment?

helm upgrade airflow-prod charts/airflow --set tag=v0.0.2

DAG Updates

Airflow Webserver Airflow Scheduler Task 1

● helm upgrade updates the Deployments state in Kubernetes
● Kubernetes gracefully terminates the webserver and scheduler and

reboots pods with updated image tag
● Task pods continue running to completion
● You experience negligible amount of downtime
● Can be automated via CI/CD tooling

Task 2

How do we monitor and alert across a

number of Airflow deployments?

helm install stable/prometheus

Monitoring Airflow(s) with Prometheus
● Prometheus

○ Also CNCF project

○ Time series database

○ Pull-based

○ Auto-scrape with kubernetes annotations

and SD plugin

○ Works great with Grafana

● Airflow natively exports statsd metrics

● Statsd Exporter as a bridge to

Prometheus

Monitoring Airflow(s) with Prometheus

Prometheus

Airflow Scheduler StatsD Exporter

annotations:
 prometheus.io/scrape: true
 prometheus.io/port: 9102

labels:
 tier: airflow
 release: {{ .Release.Name }}

Kubernetes Service
Discovery Plugin

Metrics

Scrape

Monitoring Airflow(s) with Prometheus

Prometheus

Airflow Scheduler StatsD Exporter

helm install charts/airflow

Monitoring Airflow(s) with Prometheus

Prometheus

Airflow Scheduler StatsD Exporter

Airflow Scheduler StatsD Exporter

Airflow Logging
● Powers the task log view in Airflow UI

● KubernetesExecutor requires remote

logging plugin

● Several remote logging backend

plugins available

○ Object Storage (S3, GCS, WASB)

○ Elasticsearch

Airflow Logging - Object Storage

Airflow Webserver

Task 1 Task 2 Task 3
Log files uploaded after each
task before pod terminates

Webserver requests object when
log viewer is opened

Airflow Logging - Elasticsearch

helm install stable/elasticsearch

helm install stable/fluentd

Airflow Logging - Elasticsearch

Airflow Webserver

Task 1 Task 2 Task 3

ES Client Nodes

ES Data Nodes

ES Master NodesFluentd

AIRFLOW-3370 - https://issues.apache.org/jira/browse/AIRFLOW-3370

https://issues.apache.org/jira/browse/AIRFLOW-3370

Authentication and Authorization

helm install stable/nginx-ingress

● Ingress Controllers

○ Exposes a Kubernetes service to the outside world

○ Fulfulls Kubernetes Ingress resources

Authentication and Authorization

Airflow Webserver

NGINX Ingress

airflow-prod.company.com

Watch for Ingress
resources

Auth Server

Auth request 200 Response

annotations:
 nginx.ingress.kubernetes.io/auth-url: https://auth-server.company.com

FAB SecurityManager Plugin
- Read JWT from Auth header
- Create/Update user / role

Authorized
Request w/

JWT in
header

Outside
World
(JWT) (1)

(2) (3)
(4)

(5)

(6)

(0)

Special Mention: KubernetesPodOperator

Airflow Scheduler

Task Custom Pod

Thank you!

greg@astronomer.io

