Running Apache Airflow reliably with Kubernetes

and other open source software

April 17, 2019 Data Council San Francisco, CA

Greg Neiheisel, CTO

On Deck

- Quick Airflow / Kubernetes overview
- Running Airflow at Scale
- Major system design considerations
- Lessons and best practices we've learned along the way

What is Apache Airflow?

- A task scheduler written in Python to programatically author, schedule, and monitor dependency driven workflows (DAGs)
 - Pluggable architecture, focused on ETL, ML use-cases
 - \circ $\;$ Lots of existing building blocks
- Top-level Apache Project
 - 11,000+ stars on github
 - **6,000+ commits**
 - 700+ contributors

Airflow core concepts

- **DAGs** created in code, typically associated with a cron schedule
- **DAG Runs** typically execution of a dag for a given execution date
- **Task Instances** represents an execution of a node in the DAG

Times are changing

- Wider Use Cases
 - ETL, ML, Reporting, Data Integrity
- Higher Usage
 - More teams with different skill sets and goals for Airflow usage
 - More DAGs running more frequently
- Stricter SLAs
- More complex core components (executors, operators, etc)
 - Kubernetes, Mesos, Spark, etc.
- Immutable infrastructure

10 data engineers 240+ active DAGs 5400+ tasks per day

...as of April '18...

https://speakerdeck.com/vananth22/operating-data-pipeline-with-airflow-at-slack?slide=6

Airflow is a highly-available, mission-critical service

- Automated Airflow deployments
- Continuous delivery
- Support 100s of users and 1,000s of tasks per day
- Security
- Access controls
- Observability (Metrics / Logs)
- Autoscaling / Scale to zero-ish

Kubernetes

Kubernetes is a portable, extensible open-source platform for managing containerized workloads and services, that facilitates both declarative configuration and automation

Kubernetes

Applications are broken into smaller, independent pieces and can be deployed and managed dynamically

1: 🎯	2:>_					📢 0% 🗘 12 🙆 8%			
9	M # 2 &	🔕 Kubernetes Engine - ast 🗙 🌘 a	stronomeri	io/astronom 🗙	O astro	onomerio/houston-a 🗙 🛛 🛐 Worksp	aces Astronom 🗙 🥂 👸 Grafa		
$\leftarrow \rightarrow$	C https://console.cloud	l.google.com/kubernetes/worklo	oad?orga	nizationId=11	.447114	1921&orgonly=true&project=	astronomer-dev-190903&		
	Google Cloud Platform	🕽 astronomer-dev 👻			۹				
٢	Kubernetes Engine	Workloads C REFI	RESH	+ DEPLOY					
.0. 0.0 0.0	Clusters	Workloads are deployable units of computing that can be created and managed							
1	Workloads	in a cluster.							
А	Services	\Xi 🛛 Is system object : False 🔞	Namespace : datarouter-planetary-nebula-1234 😒 Filter workloads				X 🛛 Columns 👻		
	Applications	Name ^	Status	Туре	Pods	Namespace	Cluster		
	Configuration	planetary-nebula-1234-flower	🥝 ОК	Deployment	1/1	datarouter-planetary-nebula-1234	astronomer-dev-lybjumoigv		
	Storage	planetary-nebula-1234-pgbouncer	🥝 ок	Deployment	1/1	datarouter-planetary-nebula-1234	astronomer-dev-lybjumoigv		
		planetary-nebula-1234-redis	🥝 ок	Stateful Set	1/1	datarouter-planetary-nebula-1234	astronomer-dev-lybjumoigv		
		planetary-nebula-1234-scheduler	🥝 ок	Deployment	1/1	datarouter-planetary-nebula-1234	astronomer-dev-lybjumoigv		
		planetary-nebula-1234-statsd	📀 ок	Deployment	1/1	datarouter-planetary-nebula-1234	astronomer-dev-lybjumoigv		
		planetary-nebula-1234-webserver	🥝 ок	Deployment	1/1	datarouter-planetary-nebula-1234	astronomer-dev-lybjumoigv		
		planetary-nebula-1234-worker	🥝 ок	Stateful Set	1/1	datarouter-planetary-nebula-1234	astronomer-dev-lybjumoigv		

Kubernetes

- **Pod** One or more colocated containers, share volumes, ports
- **Deployment** Higher level abstraction, manages pods, replica sets
- **Stateful Set** Similar to Deployment, except each replica gets a stable hostname and can mount persistent volumes
- **Daemon Set** Replica pods deployed to each node
- **Namespace** Virtual cluster backed by the same physical cluster

Declarative Service Definition with Kubernetes / Helm

Helm helps you manage Kubernetes applications — Helm Charts helps you define, install, and upgrade even the most complex Kubernetes application.

: 🌍 2: :

helm.astronomer.io worker-statefulset.yaml ## Airflow Worker StatefulSet {{- if eq .Values.executor "CeleryExecutor" }} kind: StatefulSet apiVersion: apps/v1 metadata: name: {{ .Release.Name }}-worker lahels: tier: airflow component: worker release: {{ .Release.Name }} workspace: {{ .Values.platform.workspace | quote }} chart: "{{ .Chart.Name }}-{{ .Chart.Version }}" heritage: {{ .Release.Service }} serviceName: {{ .Release.Name }}-worker replicas: {{ .Values.workers.replicas }} podManagementPolicy: Parallel matchLabels: tier: airflow component: worker release: {{ .Release.Name }} workspace: {{ .Values.platform.workspace | guote }}

helm install -n airflow-prod charts/airflow

Airflow Executors

A pluggable way to scale out Airflow workloads. Responsible for running airflow run \${dag_id} \${task_id} \${execution_date} somewhere.

Executors - Sequential/Local

- Fork off and run tasks in subprocess
- Good for simple workloads
- Eventually things need to scale out

Executors - Local Executor

Executors - Celery Executor

- Distributed Task Queue
- Redis, RabbitMQ, etc dependency
- Configure number of workers
 - Kubernetes HorizontalPodAutoscaler
- Configure worker size
 - Kubernetes resource requests / limits

Executors - Celery Executor

Executors - Kubernetes Executor

- Scale to zero / near-zero
- Each task runs in a new pod
 - Configurable resource requests (cpu/mem)
- Scheduler subscribes to Kubernetes event stream
- Pods run to completion
- Straightforward and natural
- DAG distribution
 - Git clone with init container for each pod
 - Mount volume with DAGs
 - \circ ~ Ensure the image already contains the DAG code

Executors - Kubernetes Executor

Executors - Kubernetes Executor

naste

How do we deploy DAG updates to a running environment?

helm upgrade airflow-prod charts/airflow --set tag=v0.0.2

- helm upgrade updates the Deployments state in Kubernetes
- Kubernetes gracefully terminates the webserver and scheduler and reboots pods with updated image tag
- Task pods continue running to completion
- You experience negligible amount of downtime
- Can be automated via CI/CD tooling

How do we monitor and alert across a number of Airflow deployments?

helm install stable/prometheus

Monitoring Airflow(s) with Prometheus

- Prometheus
 - Also CNCF project
 - Time series database
 - Pull-based
 - Auto-scrape with kubernetes annotations and SD plugin
 - Works great with Grafana —
- Airflow natively exports statsd metrics
- Statsd Exporter as a bridge to Prometheus

1: 🎯	2: >_ 3: 9: 🛠			◀ 0% ♀ 12 @ 23% ⊌ 10	B°F ↓T 1.8 / 2.2 KB/s	a 🗢 97% 🖿 100% ❷ Tue Apr 09 8:22:	39 PM	
o Airfl	ow Deployment Overview - X	+						
$\leftarrow \ \rightarrow$	C 🔒 grafana.datarout	er.ai/d/E5LsXoamz/airflov	w-deployment-overview?orgId=1	xvar-deployment=galactic-cosmology-	3441	\$	٤ 🔞	
6	Airflow Deploymer	nt Overview 🗸			C I	② Last 30 minutes Refresh every 10s Q	C C	
	Deployment galactic-cosmo	ology-3441 🔻						
	✓ At a Glance							
		Deployme	ent Status		Scheduler H	leartbeat		
	Healthy				Healthy			
	√ Quotas							
		Max Pods		Max CPU		Max Memory		
		14 pods		5.4 cores		21.7 GB		
		Running Pods		Reserved CPU		Reserved Memory		
		50%		50%		50%		
	✓ Scheduler							
	i s	Scheduler Heartbeat		Dagbag Size		Zombies Killed		
		157151		1		0		
?	i Successful Tasks	i 0.15 ops	Task Success Rate	i 1.00 ops	Task Failure Rate	i Failed Tasks	s	

- galactic-cosmology-3441 redis - galactic-cosmology-3441 statsd - galactic-cosmology-3441 scheduler

— galactic-cosmology-3441 redis 🗕 galactic-cosmology-3441 statsd 🗕 galactic-cosmology-3441 scheduler

✓ Container Status

?

	Container Status	
Container	Pod	Status
galactic-cosmology-3441-redis	galactic-cosmology-3441-redis-0	Healthy
galactic-cosmology-3441-scheduler	galactic-cosmology-3441-scheduler-55fcf74956-bgggp	Healthy
galactic-cosmology-3441-pgbouncer	galactic-cosmology-3441-pgbouncer-55874674fc-fslcj	Healthy
galactic-cosmology-3441-statsd	galactic-cosmology-3441-statsd-7656dc98f5-9cng2	Healthy
galactic-cosmology-3441-flower	galactic-cosmology-3441-flower-7b7c9f8598-gcv7l	Healthy
galactic-cosmology-3441-webserver	galactic-cosmology-3441-webserver-dd858849d-knw7m	Healthy
galactic-cosmology-3441-pgbouncer-metrics	galactic-cosmology-3441-pgbouncer-55874674fc-fslcj	Healthy
galactic-cosmology-3441-scheduler-gc	galactic-cosmology-3441-scheduler-55fcf74956-bgggp	Healthy
galactic-cosmology-3441-worker	galactic-cosmology-3441-worker-85f6f4d96b-jld7z	Healthy

Airflow Logging

- Powers the task log view in Airflow UI
- KubernetesExecutor requires remote logging plugin
- Several remote logging backend plugins available
 - Object Storage (S3, GCS, WASB) Ο
 - Elasticsearch 0

- Job 7976: Subtask echo_env AIRFLOW_CTX_EXECUTION_DATE=2018-01-03T07:25:00+80:00
- Job 7976: Subtask echo_env AIRFLOW_CTX_DAG_RUN_ID=scheduled__2018-01-03T07:25:00+00:00

Airflow Logging - Object Storage

Airflow Logging - Elasticsearch

helm install stable/elasticsearch

helm install stable/fluentd

Airflow Logging - Elasticsearch

AIRFLOW-3370 - https://issues.apache.org/jira/browse/AIRFLOW-3370

Authentication and Authorization

- Ingress Controllers
 - Exposes a Kubernetes service to the outside world
 - Fulfulls Kubernetes Ingress resources

helm install stable/nginx-ingress

Thank you!

greg@astronomer.io

