

Ray for Reinforcement Learning

A general-purpose system for parallel and distributed Python https://github.com/ray-project/ray

> **Robert Nishihara** @robertnishihara

A Growing Number of Use Cases

Alibaba.com

Berkelev **ERICSSON**

facebook J.P.Morgan

MorganStanley :: PRIMER Microsoft

The Big Picture

The Big Picture

The Big Picture

Use Case: Online Machine Learning

- output
- model deploy

• 3 min, streaming + model training, from feature / label to model

9

• 5 min, streaming + training + serving, from feature / label to

 5% CTR improvement comparing to offline model; 1% CTR improvement comparing to blink solution

def read_array(file):
 # read array "a" from "file"
 return a

def add(a, b):
 return np.add(a, b)

©2017 RISELab

@ray.remote
def read_array(file):
 # read array "a" from "file"
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

©2017 RISELab

@ray.remote
def read_array(file):
 # read array "a" from "file"
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote([5, 5])

@ray.remote
def read_array(file):
 # read array "a" from "file"
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote([5, 5])
id2 = read_array.remote([5, 5])

@ray.remote
def read_array(file):
 # read array "a" from "file"
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote([5, 5])

id2 = read_array.remote([5, 5])

id3 = add.remote(id1, id2)

@ray.remote
def read_array(file):
 # read array "a" from "file"
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote([5, 5])

id2 = read_array.remote([5, 5])
id3 = add.remote(id1, id2)
ray.get(id3)

@ray.remote
def read_array(file):
 # read array "a" from "file"
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote([5, 5])

id2 = read_array.remote([5, 5])
id3 = add.remote(id1, id2)
ray.get(id3)

Classes -> Actors

©2017 RISELab

@ray.remote
def read_array(file):
 # read array "a" from "file"
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote([5, 5])

id2 = read_array.remote([5, 5])
id3 = add.remote(id1, id2)
ray.get(id3)

Classes -> Actors

@ray.remote(num_gpus=1)
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

@ray.remote
def read_array(file):
 # read array "a" from "file"
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote([5, 5])

id2 = read_array.remote([5, 5])
id3 = add.remote(id1, id2)
ray.get(id3)

Classes -> Actors

@ray.remote(num_gpus=1)
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()
ray.get([id4, id5])

©2017 RISELab

Actors: Parameter Server Example

```
@ray.remote
class ParameterServer(object):
    def __init__(self):
        self.params = np.zeros(10)
    def get_params(self):
        return self.params
    def update_params(self, grad):
        self.params -= grad
```

©2017 RISELab

Actors: Parameter Server Example

Actors: Parameter Server Example

How does this work under the hood?

How does this work under the hood?

<u>Tasks</u>

@ray.remote
def read_array(file):
 # read array "a" from "file"
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote([5, 5])

id2 = read_array.remote([5, 5])

id3 = add.remote(id1, id2)
ray.get(id3)

How does this work under the hood?

ray.readthedocs.io/en/latest/tune.html

tune

Distributed Hyperparameter Search on Ray

Hyperparameters?

©2017 RISELab

Are hyperparameters actually that important?

Why a framework for tuning hyperparameters?

We want the best model

Resources are expensive

Model training is time-consuming

Tune is built with Deep Learning as a priority.

Tune is simple to use.

for _ in range(N): reporter(...)

Quick Tune API Demo

```
import ray
import ray.tune as tune
ray.init()
```

```
def train_func(config):
    model = Model(config)
    ( ... )
    for idx, (data, target) in enumerate(dataset):
        ( ... )
        accuracy = model.train(data, target)
```



```
import ray
import ray.tune as tune
```

ray.init()

```
def train_func(config, reporter): # add a reporter arg
    model = Model(config)
   ( ... )
    for idx, (data, target) in enumerate(dataset):
        ( ... )
        accuracy = model.train(data, target)
```

ray.readthedocs.io/en/latest/tune.html

reporter(timesteps_total=idx, mean_accuracy=accuracy) # report metrics


```
def train_func(config, reporter): # add a reporter arg
   model = Model(config)
   (...)
   for idx, (data, target) in enumerate(dataset):
        (...)
       accuracy = model.train(data, target)
```

```
all_trials = tune.run_experiments({
   "my_experiment": {
       "run": train_func,
})
```

ray.readthedocs.io/en/latest/tune.html

reporter(timesteps_total=idx, mean_accuracy=accuracy) # report metrics

run experiments({ "my_experiment_name": { "run": "my func",

},

"stop": { "mean_accuracy": 100 }, "config": { "beta": grid_search([1, 2]),

ray.readthedocs.io/en/latest/tune.html

"alpha": grid_search([0.2, 0.4, 0.6]),

RLlib

A scalable and unified library for reinforcement learning https://rllib.io

What is **RLlib**?

Emerging Al Applications

Reinforcement Learning

Environment

Applications of Reinforcement Learning

AlphaGo (2016)

- Observations: board state
- Actions:
 - where to place stone
- Rewards: - win / lose

Convolution

Applications of Reinforcement Learning

Antenna tilt control (research)

- Observations:
 - positions of users
 - user signal strength
- Actions:
 - antenna tilt adjustment
- Rewards:
 - network throughput

Reinforcement Learning

Agent

Environment

action (a_{i+1}) state (s_i) (observation)

reward (r_i)

Learn which actions are best to take using feedback

- Learn which actions are best to take using feedback
- Agent takes an action based on state Put hand in fire 0

Image from Wikipedia

- Learn which actions are best to take using feedback
- Agent takes an action based on state • Put hand in fire
- Actions change the environment
 - Hand in new location Ο
 - Heat travels to my hand Ο

Image from Wikipedia

- Learn which actions are best to take using feedback
- Agent takes an action based on state • Put hand in fire
- Actions change the environment
 - Hand in new location Ο
 - Heat travels to my hand Ο
- Agent observes new state of environment
 - "My hand is hot" Ο
 - Pain -> low reward

Image from Wikipedia

- Learn which actions are best to take using feedback
- Agent takes an action based on state • Put hand in fire
- Actions change the environment
 - Hand in new location \bigcirc
 - Heat travels to my hand Ο
- Agent observes new state of environment
 - "My hand is hot"
 - Pain -> low reward Ο
- Agent uses reward to update its policy "Don't put hand in fire"

Image from Wikipedia

RLlib: A Unified Library for Reinforcement Learning

Three main value adds:

- 3. APIs that make algorithms accessible to a variety of applications
- 2. Collection of scalable reference algorithms

. Abstractions for implementing distributed RL algorithms (ICML '18)

Reference Algorithms

• High-throughput architectures

- Distributed Prioritized Experience Replay (Ape-X)
- Importance Weighted Actor-Learner Architecture (IMPALA)

Gradient-based

- Advantage Actor-Critic (A2C, A3C)
- Deep Deterministic Policy Gradients (DDPG, TD3)
- Deep Q Networks (DQN, Rainbow)
- Policy Gradients
- Proximal Policy Optimization (PPO)

• **Derivative-free**

- Augmented Random Search (ARS)
- Evolution Strategies

APIs

- Stable public APIs (see <u>rllib.io</u>)
- **Custom environments**
 - OpenAl gym \bigcirc
 - Vectorized \bigcirc
 - Multi-agent \bigcirc
 - External simulators \bigcirc
 - \bigcirc
- Custom policy network models
 - Recurrent policies \bigcirc
 - Complex observation spaces (dict / tuple spaces) \bigcirc
 - Parametric action spaces (variable-length / infinite space of actions) \bigcirc
- Custom policy losses / algorithms
- Also can "drop down to Ray"

+ Multi-GPU PPO / IMPALA

APIs

Integration with Tune

```
import ray
import ray.tune as tune
ray.init()
tune.run_experiments({
    "my_experiment": {
        "run": "PPO",
        "env": "CartPole-v0",
        "stop": {"episode_reward_mean": 200},
        "config": {
            "num_gpus": 0,
            "num_workers": 1,
            "sgd_stepsize": tune.grid_search([0.01, 0.001, 0.0001]),
        },
   },
})
```

APIs

Integration with Tune

== Status ==

Using FIFO scheduling algorithm. Resources requested: 4/4 CPUs, 0/0 GPUs Result logdir: ~/ray_results/my_experiment PENDING trials:

- PPO_CartPole-v0_2_sgd_stepsize=0.0001: RUNNING trials:

- PPO_CartPole-v0_0_sgd_stepsize=0.01:
- PPO_CartPole-v0_1_sgd_stepsize=0.001:

TensorBoard

PENDING

RUNNING [pid=21940], 16 s, 4013 ts, 22 rew RUNNING [pid=21942], 27 s, 8111 ts, 54.7 rew

Performance

Distributed PPO (vs OpenMPI)

Ape-X Distributed DQN, DDPG

Amazon SageMaker RL

Reinforcement learning for every developer indicate scientist

390

R7 •

AWS	Simula
Am Sun	nazon nerian
DQN	PF
DQN	PF

Accelerate your Pandas workflows by changing a single line of code

ray.readthedocs.io/en/latest/tune.html

What is Modin?

Modin: Pandas on Ray

Accelerate your pandas workloads by changing one line of code

©2017 RISELab

Modin: Pandas on Ray

Accelerate your pandas workloads by changing one line of code

To use Modin, replace the pandas import:

import pandas as pd
import modin.pandas as pd

Installation

Modin can be installed from PyPI:

pip install modin

©2017 RISELab

Why Modin?

- Faster pandas, even on your laptop
 - Up to 4x speed improvement over pandas on 4 physical cores 0
- Cluster support -- experimental!
- A DataFrame library aimed at bridging the gap between MB-scale and TB-scale data

©2017 RISELab

- 2 The Query Compiler layer will compose the query and perform some optimizations based on the format of the data in memory.
 - The Partition Manager layer effectively manages partitioning, serialization, and data distribution. It ships the optimized queries to the data.

3

Each partition maintains a part of the entire dataset.

Executes on Ray

Performance

80

Performance

Speedup df.sum() w/o optim. 2^20 rows x 2^8 cols, int64

		1	2	4 ncols	8	16			1	2	4 ncols	8	16
	1-	1.03	0.81	2.70	3.32	3.43		1-	1.69	3.10	3.13	3.08	3.17
	2 -	0.73	1.06	1.83	2.09	2.22		2 -	1.62	2.01	1.96	2.06	1.97
SWOIN	4 -	0.70	1.09	1.94	2.02	2.45	nrows	4 -	1.68	2.20	2.12	2.23	2.47
	8 -	0.74	1.06	1.56	1.87	2.41		8 -	1.73	2.11	2.11	2.08	2.24
1	6 -	0.74	1.03	1.58	1.74	1.94		16-	1.75	2.07	2.06	2.05	2.10

Speedup df.sum() w/ optim. 2^20 rows x 2^8 cols, int64

Conclusion

- Ray is an open source project for distributed computing
- Support for the full ML lifecycle (data collection, training, simulation, serving)

special-purpose distributed systems -> general-purpose distributed system

