
Ray for Reinforcement Learning
A general-purpose system for parallel and distributed Python

https://github.com/ray-project/ray

Robert Nishihara
@robertnishihara

https://github.com/ray-project/ray


2 ©2017 RISELab

A Growing Number of Use Cases
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Use Case: Online Machine Learning

• 3 min, streaming + model training, from feature / label to model 
output

• 5 min, streaming + training + serving, from feature / label to 
model deploy

• 5% CTR improvement comparing to offline model; 1% CTR 
improvement comparing to blink solution
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Functions -> Tasks

def read_array(file):
    # read array “a” from “file”
    return a

def add(a, b):
    return np.add(a, b)

Ray API
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Classes -> ActorsFunctions -> Tasks
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Classes -> Actors

@ray.remote(num_gpus=1)
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
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Classes -> Actors

@ray.remote(num_gpus=1)
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value

c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()
ray.get([id4, id5])

Functions -> Tasks

@ray.remote
def read_array(file):
    # read array “a” from “file”
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote([5, 5])
id2 = read_array.remote([5, 5])
id3 = add.remote(id1, id2)
ray.get(id3)

Ray API
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@ray.remote
class ParameterServer(object):
    def __init__(self):
        self.params = np.zeros(10)
    def get_params(self):
        return self.params
    def update_params(self, grad):
        self.params -= grad

Actors: Parameter Server Example
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@ray.remote
class ParameterServer(object):
    def __init__(self):
        self.params = np.zeros(10)
    def get_params(self):
        return self.params
    def update_params(self, grad):
        self.params -= grad

Actors: Parameter Server Example

@ray.remote(num_gpus=1)
def worker(ps):
    while True:
        params = ray.get(ps.get_params.remote())
        grad = ...  # Use TensorFlow
        ps.update_params.remote(grad)
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Node 1 Node 2 Node 3

Ray Architecture
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How does this work under the hood?

@ray.remote
def read_array(file):
    # read array “a” from “file”
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote([5, 5])
id2 = read_array.remote([5, 5])
id3 = add.remote(id1, id2)
ray.get(id3)

Tasks
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Distributed Hyperparameter 
Search on Ray

ray.readthedocs.io/en/latest/tune.html

http://ray.readthedocs.io/en/latest/tune.html
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Hyperparameters?
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Are hyperparameters actually that important?



Why a framework for tuning hyperparameters?

Model training is 
time-consuming

Resources are 
expensive

We want the best 
model



Resource Aware 
Scheduling

Seamless 
Distributed Execution

Simple API for 
new algorithms

Framework Agnostic

ray.readthedocs.io/en/latest/tune.html

Tune is built with Deep Learning as a priority.

ray.readthedocs.io/en/latest/tune.html

http://ray.readthedocs.io/en/latest/tune.html


Tune is simple to use. 

ray.readthedocs.io/en/latest/tune.htmlray.readthedocs.io/en/latest/tune.html

http://ray.readthedocs.io/en/latest/tune.html


Quick Tune API Demo
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RLlib
A scalable and unified library for reinforcement learning

https://rllib.io

https://rllib.io
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Emerging AI Applications



Reinforcement Learning

Agent Environment

action (ai+1)

Policy:
state  � action

state (si)(observation) 
reward (ri)



Applications of Reinforcement Learning

AlphaGo (2016)
• Observations:

– board state
• Actions:

– where to place stone
• Rewards:

– win / lose



Applications of Reinforcement Learning

Antenna tilt control 
(research)
• Observations:

– positions of users
– user signal strength

• Actions:
– antenna tilt adjustment

• Rewards:
– network throughput



Agent Environment

action (ai+1)

state (si)(observation) 
reward (ri)

trajectory: s0, (s1, r1), …, (sn, rn)

policy

Reinforcement Learning

Policy 
improvement

(e.g., SGD)

Policy 
evaluation

(state � action)



What is Reinforcement Learning?

● Learn which actions are best to take 
using feedback

Image from Wikipedia
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What is Reinforcement Learning?

● Learn which actions are best to take 
using feedback

● Agent takes an action based on state
○ Put hand in fire

● Actions change the environment
○ Hand in new location
○ Heat travels to my hand

● Agent observes new state of 
environment
○ “My hand is hot”
○ Pain -> low reward

● Agent uses reward to update its policy
○ “Don’t put hand in fire”

Image from Wikipedia



RLlib: A Unified Library for Reinforcement Learning

Three main value adds:

2. Collection of scalable 
reference algorithms

1. Abstractions for 
implementing distributed RL 
algorithms (ICML '18)

3. APIs that make algorithms 
accessible to a variety of 
applications



• High-throughput architectures
– Distributed Prioritized Experience Replay (Ape-X)
– Importance Weighted Actor-Learner Architecture (IMPALA)

Reference Algorithms

Community 
Contributions

• Derivative-free
– Augmented Random Search (ARS)
– Evolution Strategies

• Gradient-based
– Advantage Actor-Critic (A2C, A3C)
– Deep Deterministic Policy Gradients (DDPG, TD3)
– Deep Q Networks (DQN, Rainbow)
– Policy Gradients
– Proximal Policy Optimization (PPO)



APIs
● Stable public APIs (see rllib.io)
● Custom environments

○ OpenAI gym
○ Vectorized
○ Multi-agent
○ External simulators
○ *

● Custom policy network models
○ Recurrent policies
○ Complex observation spaces (dict / tuple spaces)
○ Parametric action spaces (variable-length / infinite space of actions)

● Custom policy losses / algorithms
● Also can "drop down to Ray"

+ Multi-GPU PPO / IMPALA



APIs
● Integration with Tune



APIs
● Integration with Tune



Performance

Evolution
Strategies
(vs Redis-based)

Distributed PPO
(vs OpenMPI)

Ape-X Distributed
DQN, DDPG
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Accelerate your Pandas workflows by 
changing a single line of code

ray.readthedocs.io/en/latest/tune.html

http://ray.readthedocs.io/en/latest/tune.html
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Modin: Pandas on Ray
Accelerate your pandas workloads by changing one line of code

Tools good at 1MB Tools good at 1TB+
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Modin: Pandas on Ray
Accelerate your pandas workloads by changing one line of code
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● Faster pandas, even on your laptop

○ Up to 4x speed improvement over pandas on 4 physical cores

● Cluster support -- experimental!

● A DataFrame library aimed at bridging the gap between MB-scale and 

TB-scale data 

Why Modin?
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Performance
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Performance
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Conclusion

• Ray is an open source project for distributed computing

• special-purpose distributed systems -> general-purpose distributed system

• Support for the full ML lifecycle (data collection, training, simulation, serving)

github.com/ray-project/ray


