
Powering Uber's
Global Network Analytics
in Near Real-time with
Apache Hudi Delta Streamer
Apr 17, 2019

Ethan Guo, Nishith Agarwal

Connectivity Team, Hadoop Platform Team

01 Motivation
02 Apache Hudi Incremental Pulls
03 Building Incremental Pipelines
04 Experience @ Uber

Agenda

Motivation
Scale, Problem

Transportation at Scale

Cities

600+
Countries

64

Continents

6
Cumulative trips

10B

We ignite opportunity by setting the
world in motion.

Network Monitoring
Heavy mobile network usage

Mobile first: services through apps
▹ Riders, drivers, eats, new mobility (bikes,

scooters), etc.

Apps rely 100% on wireless networks
▹ 70% of requests in rider app use cellular

(LTE/3G/2G)

▹ 92% of requests in driver app use cellular

Near real-time monitoring of
network reliability/perf required!

Performance - High Dimensionality
Performance of wireless networks highly varies across the globe

Fig: Tail-end network latencies across the major cities where Uber operates

Performance - High Dimensionality
Other dimensions

Time
▹ Load variance, congestion

Fig 1: Tail-end network latencies for 2km hex across different days of week in Delhi, India

Fig 2: Tail-end network latencies for 2km hex across two major carriers in Delhi, India

Protocol
▹ HTTP/1.1 vs H2 vs H3

Domain names

User mobility

ISP network quality
▹ Cellular carriers

Network connectivity / coverage
▹ LTE vs 3G vs EDGE/2G vs WiFi

Visibility into Network Performance
Multiple KPIs with dimension breakdowns

Challenges
▹ High dimensionality, on the order of 10M

▹ Large data volume: subject to sampling,
only last few days in ELK

▹ Custom filters and calculation

Customized Performance Dashboard
▹ Apache Spark jobs generating perf

summary in Apache Hive tables, with
months of history

▹ Latency and error rate metrics across
several dimensions

▹ Hours -> minutes with a few clicks by
on-call engineers

Partitioned by datestr

Batch Job Updating Metrics (Legacy)
Scalability challenges and ineffective use of resources

Raw
Event
Table

Aggre-
gate

Datestr
_start

dimensions metrics

day 2019-04-01 {“country”:
“united_states”}

{“request_
duration_p50”:

100.0}
day 2019-04-01 {“country”:

“united_states”,
“network_type”:

“lte”}

{“non_200s_
rate”: 0.5}

week 2019-04-01 {“protocol”: “h2”} {“error_
samples”: 10}

(Simplified schema for demonstration)

Summary
Table

Transform last day/week of data
and overwrite summary

Scalability issues
▹ Expensive table scan/read: repeated reading of data

▹ Recomputation on same data: inefficient use of resources

▹ Summary not fresh: long time to refresh the metrics (3h~5h)

Expensive
scan Recomputation Not fresh

Partitioned by datestr

Incrementals to the Rescue
Incrementally pulls new data and updates performance metrics

A more efficient way
▹ Scan and process only new/updated entries in data source

▹ Update existing performance metrics with incrementals

Raw
Event
Table

Aggre-
gate

Datestr
_start

dimensions metrics

day 2019-04-01 {“country”:
“united_states”}

{“request_
duration_p50”:

100.0}
day 2019-04-01 {“country”:

“united_states”,
“network_type”:

“lte”}

{“non_200s_
rate”: 0.5}

week 2019-04-01 {“protocol”: “h2”} {“error_
samples”: 10}

(Simplified schema for demonstration)

Summary
Table

Transform new and
updated entries

Delta
summary

Merge

Less scan Less
computation

Efficient
updates

Apache Hudi
Incremental Pulls
Model for efficient processing

Upsert

Changelog Changelog

Incr Pull

Normal Table
(Hive/Spark/Presto)

Dataset

Open Source
- https://github.com/apache/incubator-hudi
- https://hudi.apache.org/

Apache Hudi
Stream style processing on big data

Turn batch jobs to incremental model
▹ Improve latency by incorporating only deltas

▹ Scale more by avoiding recomputation,
lowering cost

Spark Library for
▹ Mutations to datasets

▹ Changelogs from datasets

▹ Manage files efficiently

▹ Provide snapshot isolation

▹ Upsert, insert, incremental pull primitives

Apache Hudi is either a registered trademark or trademark of the Apache Software
Foundation in the United States and/or other countries. No endorsement by The
Apache Software Foundation is implied by the use of this mark.

https://github.com/apache/incubator-hudi
https://hudi.apache.org/

Upstream
DB/Service

Cloud Data Lake/HDFS
(Long + Near term storage)

Apache Kafka

Batch Ingestion
(~1-5 min freshness)

Streaming Ingestion

Columnar/Read-
Optimized View Real-time View Incremental View Hudi exposes 3 views

of data

Data
Science/ML Dashboards

Ad Hoc Queries

Warehousing

Hudi-Based Architecture
Unified analytical storage

▹ Complete file management on a data lake,
including features such as file count, file sizing,
data layout and more.

▹ Exposes different views of data tailored for
use-cases!

▹ Full access to the organization's data across
variety of needs!

▹ Greatly reduces operational footprint,
specialized DBs only for special needs.

Apache Hudi is either a registered trademark or trademark of the Apache Software
Foundation in the United States and/or other countries. No endorsement by The
Apache Software Foundation is implied by the use of this mark.

100sTB

Stored/day

10s PB
Entire Hadoop Data Lake

1000s
 Pipelines/tables

Hudi @ Uber
The facts and the figures
Hudi @ Uber
The facts and the figures

Incremental Model
Stream style processing on batch data

Near real-time results
▹ Mini batch jobs, every few minutes

Upsert (Primitive #1)
▹ Modify processed results

▹ Like state stores in stream processing

Incremental Pull (Primitive #2)
▹ Log stream of changes, avoids costly scans

▹ Faster flow of data to next stage in dataflow

Pull
updatesupdateupdate

Source table

N files updated

Apache Hudi
incremental
pull primitive

ETL table A

M files updated

Fresher dashboards

Incremental Pipelines (ETL) and Dashboarding
Incremental processing

Using Apache Hudi
Popular ways to manage Apache Hudi datasets

● Spark DataSource API to help read/write Hudi datasets

● HudiDeltaStreamer, an end-to-end ingestion framework with
configurable sources, schema repositories and built-in support for
using Hudi to read/write datasets

IncrementalPull -> Dataset<Row> hoodieIncViewDF =
spark.read().format("com.uber.hoodie")...

Upsert -> inputDataset.write.format(“com.uber.hoodie”)...

IncrementalPull & Upsert -> spark-submit --class
com.uber.hoodie.utilities.deltastreamer.HoodieDeltaStreamer
--source HudiIncrementalSource --schemaProvider .. --operation
UPSERT …

Building Incremental
Pipelines
Update network metrics incrementally

Partitioned by datestr

Incremental Pipeline
Components to update metrics incrementally

Raw
Event
Table

Summary
Table

Transform new and
updated entries

Delta
summary

Merge

Incremental
Pulls

Compute
delta results

Upserts

Apache Hudi is either a registered trademark or trademark of the Apache Software
Foundation in the United States and/or other countries. No endorsement by The
Apache Software Foundation is implied by the use of this mark.

?

Update Metrics Incrementally
Sketching of incremental data

Categories of metrics
▹ Count: network calls, error samples

▹ Ratio/Percentage: HTTP non-200s rate, % traffic on H2

▹ Percentiles: p50, p95, p99 of request duration
Count: 10 Count: 20 Count: 15

Count: 30

Count: 45Sketching - Generate Mergeable Summary
▹ Small data structure to calculate or approximate metrics

▹ Appropriate algorithms for all categories of network metrics

Requirements
▹ Metric update only depends on incrementals and

intermediate results if necessary

▹ Intermediate results much smaller than raw events

Sketching for Count and Ratio Metrics
Counting of samples

Count
(Request, error samples)

▹ Count = # of samples in incrementals

▹ Sum of count => total count

Ratio / Percentage
(HTTP non-200s rate, % traffic on H2)

▹ Ratio = num. / denom., storing counts of
numerator and denominator from incrementals

▹ (Sum num.) / (Sum denom.) => overall ratio

Count: 10 Count: 20

Count: 30

(1, 10) => 0.1 (3, 20) => 0.15

(4, 30) => 0.13

Sketching for Percentile Metrics
Using t-Digests

Percentiles
(p50, p95, p99 of request duration)

▹ Need sketching of the distributions

▹ Use t-Digest

[1] Computing Extremely Accurate Quantiles Using t-Digests, Ted Dunning, Otmar Ertl,
https://raw.githubusercontent.com/tdunning/t-digest/master/docs/t-digest-paper/histo.pdf

t-Digests

=> p50, p95,
p99, ...

What is a t-Digest?
▹ A data structure formed by clustering

real-valued samples with variable-sized bins [1]

▹ Give high accuracy near the tails of a
distribution with small sketches

▹ No loss in accuracy when combining t-Digests
from multiple skewed distributions

▹ Knob to tune tradeoff between accuracy and
storage footprint

https://raw.githubusercontent.com/tdunning/t-digest/master/docs/t-digest-paper/histo.pdf

Storing Sketches
Intermediate Apache Hive table

Aggre-
gate

Datestr
_start

dimensions metrics_categ
ory

double_sketch
es

tdigest

day 2019-04-
01

{“country”:
“united_states”}

request_durat
ion

{“total_sampl
es”: 1000.0}

{“request_d
uration”:
“...”}

day 2019-04-
01

{“country”:
“united_states”,
“network_type”:

“lte”}

non_200s_rate {“non_200s_
samples”:

5.0,
“total_sample
s”: 600.0}

null

(Simplified schema for demonstration)

Sketches in a separate Apache Hive
table
▹ Sketches kept at daily level for all dimension

breakdowns

▹ Incrementals of raw events update sketches

▹ Serialized t-Digest stored in the table

Metrics transformed from sketches
▹ New/updated sketches update performance

summary metrics under same dimensions Aggre-
gate

Datestr
_start

dimensions metrics

day 2019-04-01 {“country”:
“united_states”}

{“request_
duration_p50”:

100.0}
day 2019-04-01 {“country”:

“united_states”,
“network_type”:

“lte”}

{“non_200s_
rate”: 0.83}

Raw network events

Pipeline Overview
Two-stage incremental updates

Raw
Event
Table

(Simplified schema for demonstration)

Sketch
Table

Transform new/
updated events

Delta
sketch

Merge

Aggre-
gate

Datestr_
start

dimensions Metrics_
category

Double_
sketches

tdigest

day 2019-04
-01

{“country”:
“united_states”}

request_durat
ion

{“total_
samples”:
1000.0}

{“request_
duration”:

“...”}
day 2019-04

-01
{“country”:

“united_states”,
“network_type”:

“lte”}

non_200s_rate {“non_200s_
samples”:

5.0, “total_
samples”:
600.0}

null

Aggre-
gate

Datestr_
start

dimensions metrics

day 2019-04-01 {“country”:
“united_states”}

{“request_
duration_p50”:

100.0}
day 2019-04-01 {“country”:

“united_states”,
“network_type”:

“lte”}

{“non_200s_
rate”: 0.5}

Summary
Table1st: Sketching 2nd: Summary

Transform new/
updated sketches

Delta
summary

Merge

Apache Hudi is either a registered trademark or trademark of the Apache Software
Foundation in the United States and/or other countries. No endorsement by The
Apache Software Foundation is implied by the use of this mark.

Implementation with Hudi Delta Streamer

Transforming incrementals with
Hudi Transformer interface
▹ Pre-process and transform new/updated

data into incremental sketch/summary

class NetPerfSketchTransformer
 extends Transformer {
 def apply(
 jsc: JavaSparkContext,
 sparkSession: SparkSession,
 rowDataset: Dataset[Row],
 properties: TypedProperties
): Dataset[Row] = {
 ...
 }
}

transform

Existing
sketch/

summary

New/updated
sketch/

summary

transform

Delta
sketch/

summary

merge
Updates sketches/summaries with
HoodieRecordPayload interface
▹ Merge the sketches/summaries under

same dimensions

class UpdateDataSketch(
 record: GenericRecord,
 orderingVal: Comparable[_])
 extends BaseAvroPayload(
 record, orderingVal)
 with HoodieRecordPayload[
 UpdateDataSketch] {
 ...

 @throws[IOException]
 override def
 combineAndGetUpdateValue(
 currentValue: IndexedRecord,
 schema: Schema
): Optional[IndexedRecord] = {
 ...
 }
 ...
}

Experience @ Uber
Testing, Deployment, & Monitoring

Production Incremental Pipeline Setup

Testing jobs with spark-submit
▹ Apache Hudi configs stored in properties file

and passed in to Delta Streamer class

▹ Out-of-box Apache Hudi metrics to grafana
dashboard for monitoring

○ Total duration (transformation +
commit), number of new files added,
number of records added/updated,
etc.

Customization
▹ Predicate pushdown and projection pruning

(2-3x improvements on reading data)

▹ Fine tuning of shuffle partitions
(spark.sql.shuffle.partitions)

Testing Customization

Production Incremental Pipeline Setup

Deploy to Hadoop Yarn cluster using
Apache Zeppelin
▹ Apache Zeppelin: Web-based notebook that

enables data-driven, interactive data
analytics, out-of-box support for
Spark/Hadoop

▹ Setup crontab for incremental pipelines to
run every 1 hour

Validate performance summary with
batch pipelines
▹ Run incremental and batch jobs in parallel

▹ Compare performance metrics of dates with
complete data between two pipelines

○ Count/radio metrics match

○ Percentile metrics with less than 0.5%
error for large sample size (>10k)

Testing Customization ValidationDeploy

Incremental pipeline
▹ 150 cores = 150 executors * 1 core each

▹ Sketching: 30~40 min, ~6 min on read, ~30 min on compute/write. ~5GB/day of sketches.

▹ Summary: <30 min, ~2 min on read, ~20 min on compute/write. ~4GB/day of summary.

Pipeline Runtime
Efficient table scan/read, computation

Data size
▹ Billions of records and 100s GB per day

8x improvements on resources, 4x on freshness

Stream Near
Real-time

Batch
Batch update pipeline
▹ 1200 cores = 240 executors * 5 cores each

▹ 3-4 h: 10-20 min on read, >2.5 h on compute/write

< 1s < 5 mins < 1 hour

...

 We ARE HIRING!

 Reach out to us

 hadoop-platform-jobs@uber.com

mailto:hadoop-platform-jobs@uber.com

Q&A

Powering Uber's
Global Network Analytics

in Near Real-time with
Apache Hudi Delta Streamer

Apr 17, 2019

Proprietary and confidential © 2019 Uber Technologies, Inc. All rights reserved. No part of this document may be reproduced or utilized in any

form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without

permission in writing from Uber. This document is intended only for the use of the individual or entity to whom it is addressed and contains

information that is privileged, confidential or otherwise exempt from disclosure under applicable law. All recipients of this document are notified

that the information contained herein includes proprietary and confidential information of Uber, and recipient may not make use of, disseminate,

or in any way disclose this document or any of the enclosed information to any person other than employees of addressee to the extent

necessary for consultations with authorized personnel of Uber.

