
Notebooks as Functions
with papermill.

Using Nteract Libraries
@github.com/nteract/

Matthew Seal

Backend Engineer on the Big Data Platform
Orchestration Team @ Netflix

Speaker Details

What does a data platform team do?

Data Platform Services

Storage Compute Scheduling ...

Data Inputs

Events

System
Metrics

...

ETL

Data
Transport

Aggregation

Outcomes

Reports

Data
Models

...

Machine
Learning

Data
Platform

Opens
Doors
...
not this
one

Open Source Projects

Contributed to by

Headline
Jupyter Notebooks

Notebooks.
A rendered REPL combining

● Code
● Logs
● Documentation
● Execution Results.

Useful for
● Iterative Development
● Sharing Results
● Integrating Various API

Calls

A Breakdown
Status / Save Indicator

Code Cell

Displayed Output

Wins.
● Shareable
● Easy to Read
● Documentation with

Code
● Outputs as Reports
● Familiar Interface
● Multi-Language

Notebooks: A Repl Protocol + UIs

Jupyter
UIs

Jupyter
Server

Jupyter
Kernel

execute
code

receive
outputs

forward
requests

save / load
.ipynb

It’s more complex than this in reality

develop

share

Headline
Traditional Use Cases

Exploring and Prototyping.

Data Scientist

Notebook
explore

analyze

Notebooks have several attractive attributes that lend themselves to
particular development stories:

● Quick iteration cycles
● Expensive queries once
● Recorded outputs
● Easy to modify

The Good.

But they have drawbacks, some of which kept Notebooks from being used
in wider development stories:

● Lack of history
● Difficult to test
● Mutable document
● Hard to parameterize
● Live collaboration

The Bad.

Headline
Filling the Gaps

Things to preserve:

● Results linked to code
● Good visuals
● Easy to share

Focus points to extend uses.
Things to improve:

● Not versioned
● Mutable state
● Templating

Papermill

An nteract library

A simple library for executing
notebooks.

EFS

S3

Papermill

template.ipynb

run_1.ipynb

run_3.ipynb

output
notebooks

parameterize & run

run_2.ipynb

run_4.ipynbinput
notebook

input store

s3://output/mseal/

efs://users/mseal/notebooks

import papermill as pm

pm.execute_notebook('input_nb.ipynb', 'outputs/20190402_run.ipynb')

…

Each run can be placed in a unique / sortable path
pprint(files_in_directory('outputs'))

outputs/
...
20190401_run.ipynb
20190402_run.ipynb

Choose an output location.

Pass template parameters to notebook execution
pm.execute_notebook('input_nb.ipynb', 'outputs/20190402_run.ipynb',

{'region': 'ca', 'devices': ['phone', 'tablet']})

…

[2] # Default values for our potential input parameters
region = 'us'
devices = ['pc']
date_since = datetime.now() - timedelta(days=30)

[3] # Parameters
region = 'ca'
devices = ['phone', 'tablet']

Add Parameters

Same example as last slide
pm.execute_notebook('input_nb.ipynb', 'outputs/20190402_run.ipynb',

{'region': 'ca', 'devices': ['phone', 'tablet']})

…

Bash version of that input
papermill input_nb.ipynb outputs/20190402_run.ipynb -p region ca -y
'{"devices": ["phone", "tablet"]}'

Also Available as a CLI

Notebooks: Programmatically

Jupyter
UIs

Jupyter
Server

Jupyter
Kernel

execute
code

receive
outputs

forward
requests

save / load
.ipynb

develop

share

Papermill

receive
outputs

Kernel
Manager

forward
requests

read write

execute
code

Jupyter
UIs

Jupyter
Server

Jupyter
Kernel

execute
code

receive
outputs

forward
requests

save / load
.ipynb

develop

share

Parameters

How it works a bit more.

● Reads from a source
● Injects parameters
● Launches a runtime

manager + kernel
● Sends / Receives

messages
● Outputs to a

destination

Papermill

source
notebook

Runtime
Manager

Runtime
Process

Notebook
Sources

database

file

service

p2 = true

p3 = []

p1 = 1

parameter
values

stream
input/output

messages

output
notebookexecute

cells
kernel

messages

input store

Notebook
Sinks

database

file

service

Parallelizing over Parameters.

Notebook
Job #1

Notebook
Job #2

Notebook
Job #3

Notebook
Job #4

Notebook
Job #5

a=1
a=2 a=3

a=4

New Users &

Expanded Use Cases

Developed
Notebooks

Scheduled
Outcomes

Papermill

Scheduler /
Platform

￼￼

S3
pm.execute_notebook(

's3://input/template/key/prefix/input_nb.ipynb',
's3://output/runs/20190402_run.ipynb')

Azure
pm.execute_notebook(

'adl://input/template/key/prefix/input_nb.ipynb',
'abs://output/blobs/20190402_run.ipynb')

GCS
pm.execute_notebook(

'gs://input/template/key/prefix/input_nb.ipynb',
'gs://output/cloud/20190402_run.ipynb')

Extensible to any scheme

Support for Cloud Targets

New Plugin PRs Welcome

Plug n’ Play
Architecture

To add SFTP support you’d add this class
class SFTPHandler():
 def read(self, file_path):

 ...
 def write(self, file_contents, file_path):

 ...

Then add an entry_point for the handler
from setuptools import setup, find_packages
setup(

all the usual setup arguments ...
entry_points={'papermill.io': ['sftp://=papermill_sftp:SFTPHandler']}

)

Use the new prefix to read/write from that location
pm.execute_notebook('sftp://my_ftp_server.co.uk/input.ipynb',

'sftp://my_ftp_server.co.uk/output.ipynb')

Entire Library is Component Based

Headline
Diagnosing with

Failed Notebooks

A better way to review outcomes

Debugging failed jobs.

Notebook
Job #1

Notebook
Job #2

Failed
Notebook

Job #3
Notebook

Job #4
Notebook

Job #5

Output notebooks are the place to
look for failures. They have:

● Stack traces
● Re-runnable code
● Execution logs
● Same interface as input

Failed outputs
are useful.

Find the issue.

Test the fix.

Update the notebook.

Adds notebook isolation

● Immutable inputs
● Immutable outputs
● Parameterization of notebook runs
● Configurable sourcing / sinking

and gives better control of notebook flows via library calls.

Changes to the notebook experience.

Headline
How notebooks

Notebooks Are Not Libraries

Try to not treat them like a library

Notebooks are good at connecting pieces of technology and building a
result or taking an action with that technology.

They’re unreliable to reuse when complex and when they have a high
branching factor.

Notebooks are good
integration tools.

● Keep a low branching factor
● Short and simple is better
● Keep to one primary outcome
● (Try to) Leave library functions in libraries

○ Move complexity to libraries

Some development guidelines.

Tests via papermill

Integration testing is easy now

Linear notebooks with dummy parameters can test integrations
pm.execute_notebook('s3://commuter/templates/spark.ipynb',

's3://commuter/tests/runs/{run_id}/spark_output.ipynb'.format(
run_id=run_date),

{'region': 'luna', 'run_date': run_date, 'debug': True})
…

[3] # Parameters
region = 'luna'
run_date = '20180402'
debug = True

[4] spark.sql('''
insert into {out_table} select * from click_events
where date = '{run_date}' and envt_region = '{region}'

'''.format(run_date=run_date, enc_region=region,
 out_table='test/reg_test if debug else 'prod/reg_' + region))

Controlling Integration Tests

Headline
Other Ecosystem

To name a few:

- nbconvert
- commuter
- nbformat
- bookstore
- scrapbook
- ...

Host of libraries.

See jupyter and nteract githubs to find many others

Scrapbook

Save outcomes inside your notebook

[1] # Inside your notebook you can save data by calling the glue function
import scrapbook as sb
sb.glue('model_results', model, encoder='json')

…

Then later you can read the results of that notebook by “scrap” name
model = sb.read_notebook('s3://bucket/run_71.ipynb').scraps['model_results']

…

[2] # You can even save displays and recall them just like other data outcomes
sb.glue('performance_graph', scrapbook_logo_png, display=True)

Adds return values to notebooks

Commuter

A read-only interface for notebooks

No kernel / resources required

Commuter
Read-Only
Interface

Headline
Notebooks

We see notebooks becoming a common interface
for many of our users.

We’ve invested in notebook infrastructure for
developing shareable analysis resulting in many
thousands of user notebooks.

And we’ve changed over 10,000 jobs which
produce upwards of 150,000 queries a day to run
inside notebooks.

A strategic bet!

We hope you enjoyed the
session

Questions?

https://slack.nteract.io/
https://discourse.jupyter.org/

