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we’re going to talk about building tools to 
make better decisions with data



i’ve been obsessed with building 
data tools for about 20 years



@besquared almost everywhere



mode(.com)



a collaborative data science platform



our users are data scientists, analysts, and engineers



help everybody make better decisions with data



we’re here to talk about data applications



custom data applications



what’s a custom data application?



BUSINESS OPERATIONS
(SORTED BY SPECIFICITY)

well supported by 
companies and tools

this long tail is our 
competitive advantage

INDUSTRY
STANDARD

DOMAIN
SPECIFIC

LEVEL OF 
OFF-THE-SHELF
TOOL SUPPORT



there's no collection of off-the-shelf tools that 
will provide everything our organization needs 
to make better decisions with data



this is where we should focus



logistics tracking and monitoring



customer health monitoring tools for success



a/b testing tools for our product team



...







everyone one of these apps is a one-off today





switch is a collection of typescript libraries 
and tools that let us build richer and more 
interactive data applications



the data layer between our database and 
our user interface



it lets us address some of the major 
challenges we face when we’re building 
our data apps



challenge number one



CHALLENGE #1

our users always want to slice and dice their data 
in ways that we don’t anticipate



CHALLENGE #1

we don’t know what we’ll need ahead of time



CHALLENGE #1

we can’t build a new etl pipeline or deploy 
our app every time we need to answer a 
slightly different question



CHALLENGE #1

we should give our users the tools they 
need to quickly and easily express data in 
new and different ways on their own  



Introducing Formulas



an excel-like language for data expression



they let our users build custom calculations, 
even if they’re not database or programming 
language experts 



what can they do with them?



unlike excel whose formulas operate on cells, 
our formulas operate on entire datasets at a time



FORMULAS

sample dataset

ID Date Product Quantity Price Filled

1 2019-01-01 A 10 10.00 true

2 2019-01-02 B 5 20.00 false

... ... ... ... ...



[Price] / [Quantity]

EXAMPLES

calculate ratios!



Dollar to cents

[Price] * 100

EXAMPLES

convert units!



CASE [Product]
WHEN “A,”
THEN “A”
ELSE [Product]
 END

EXAMPLES

clean data!



AVG([Price] / [Quantity])

EXAMPLES

aggregate data!



LOOKUP(AVG([Price]), FIRST())

EXAMPLES

lookup values!



what else!?



NULL

LITERALS

nulls



TRUE

FALSE

LITERALS

booleans



-42

1000

3.1415926

0xBEEF

LITERALS

numbers



‘Category’

“Product Name”

LITERALS

strings



#2019-04-18#

#2019-04-18T10:50:15#

LITERALS

dates



/[\w\d]+/ig

LITERALS

regular 
expressions



[Product]
[Quantity]

ACCESS

data access



[Quantity] * 500
[Quantity] / 500
[Quantity] + 500
[Quantity] - 500
[Quantity] % 500

OPERATORS

mathematic



[Quantity]  = 500
[Quantity] <> 500
[Quantity]  < 500
[Quantity] <= 500
[Quantity]  > 500
[Quantity] >= 500

OPERATORS

relational



NOT [Filled]
[Filled] AND [Quantity]  > 500
[Filled]  OR [Quantity] <= 500

OPERATORS

logical



CASE [Filled]
WHEN TRUE
THEN “Filled”
WHEN FALSE
THEN “Unfilled”
ELSE “Unknown”
 END

CONDITIONAL

case



NOW()

FUNCTIONS

constant



FLOOR([Price])

TRIM([Product])

DATETRUNC(‘day’, [Date])

FUNCTIONS

scalar



SUM([Price])

AVG([Quantity])

COUNTD([Product])

FUNCTIONS

aggregate



RANK(SUM([Quantity]))

RUNNING_SUM(COUNT([Price]))

LOOKUP(AVG([Price]), FIRST())

FUNCTIONS

analytic



that’s it, simple and powerful 



we can build interfaces that let users 
extend our apps with their own business 
logic and calculations



for example at Mode we’re working on a 
formula editor that lets our users add 
custom calculations to their visualizations



a single formula that takes someone a few 
minutes to write might take hours or days 
to implement and deploy otherwise



not having to build etl pipelines or write app 
code every time we want to answer a 
different question amplifies our effort 100x



that’s pretty rad



let’s keep going and see how we use formulas 
to query our data



challenge number two



CHALLENGE #2

getting from data to visualization



CHALLENGE #2

a common characteristic of custom data apps is 
custom data visualizations



CHALLENGE #2

we don’t want to write ad-hoc data 
transformation code every time we want to 
build a visualization



CHALLENGE #2

we should use a language that let’s us describe 
the data we need in way that matches the 
visualizations we’re trying to build



Introducing Queries



our queries speak the language of data visualization



QUERIES

grammar
of graphics



most of the visualizations that we can 
encode with tools like vega-lite can be 
translated directly into switch queries



how do they work?



we define the data we want in our query



Field {
  formula: string;
}

QUERIES

we use fields 
which are defined 
with a formula



Field {
  formula: string;
}

QUERIES

they let us 
describe the data 
and calculations 
we want to get 
back in our query 
result 



“SUM([Quantity])”

“[Price] / [Quantity]”

“DATETRUNC(‘day’, [Date])”

QUERIES

they’re the atomic 
unit of data in a 
query 



Names {
  formula: “$[Names]”;
}

Values {
  formula: “$[Values]”;
}

QUERIES

there are two 
pre-defined fields 
called names and 
values



NAMES/VALUES

they let us combine 
multiple aggregate 
fields together into 
a single field

Names {
  formula: “$[Names]”;
}

Values {
  formula: “$[Values]”;
}



QUERIES

we’ve got filters Filter {
  field: Field;
  conds: Conditions;
}



QUERIES

they let us get rid 
of data we don’t 
want by adding 
conditions on our 
fields

Filter {
  field: Field;
  conds: Conditions;
}



QUERIES

we’ve got sorts Sort {
  field: Field;
   type: SortType;
  order: SortOrder;
}



QUERIES

they let us 
re-arrange our 
result by adding  
orders to our fields

Sort {
  field: Field;
   type: SortType;
  order: SortOrder;
}



we map our data to our visualization



QUERIES

the first way to do 
that is with marks

Mark {
  field: Field;
  color: Field[];
   size: Field[];
  label: Field[];
    ...
}



QUERIES

marks are how we 
describe the layers 
of our visualization

Mark {
  field: Field;
  color: Field[];
   size: Field[];
  label: Field[];
    ...
}



MARKS

every layer is 
defined by a 
single field

Mark {
  field: Field;
  color: Field[];
   size: Field[];
  label: Field[];
    ...
}



MARKS

it’s got channels 
like color, size, 
and label, that let 
us map fields to 
visual properties

Mark {
  field: Field;
  color: Field[];
   size: Field[];
  label: Field[];
    ...
}



MARKS

we can map as 
many channels as 
we want based on 
the needs of our 
visualization

Mark {
  field: Field;
  color: Field[];
   size: Field[];
  label: Field[];
    ...
}



QUERIES

using marks and 
the other pieces 
we talked about 
we can build a 
complete visual 
mapping which we 
call a pivot query

PivotQuery {
   column: Field[];
        x: Field[];
      row: Field[];
        y: Field[];

   values: Field[];

    marks: Mark[];
  filters: Filter[];
    sorts: Sort[];
}



QUERIES

marks, filters, and 
sorts

PivotQuery {
   column: Field[];
        x: Field[];
      row: Field[];
        y: Field[];

   values: Field[];

    marks: Mark[];
  filters: Filter[];
    sorts: Sort[];
}



PIVOT QUERY

more channels

PivotQuery {
   column: Field[];
        x: Field[];
      row: Field[];
        y: Field[];

   values: Field[];

    marks: Mark[];
  filters: Filter[];
    sorts: Sort[];
}



PIVOT QUERY

column and row 
which let us facet 
data across or 
down our 
visualization

PivotQuery {
   column: Field[];
        x: Field[];
      row: Field[];
        y: Field[];

   values: Field[];

    marks: Mark[];
  filters: Filter[];
    sorts: Sort[];
}



PIVOT QUERY

x and y which let 
us position data 
across or down 
our visualization 
within those facets 

PivotQuery {
   column: Field[];
        x: Field[];
      row: Field[];
        y: Field[];

   values: Field[];

    marks: Mark[];
  filters: Filter[];
    sorts: Sort[];
}



PIVOT QUERY

values which let’s 
us combine all of 
the fields in it into 
a single field that 
we can use in the 
other channels

PivotQuery {
   column: Field[];
        x: Field[];
      row: Field[];
        y: Field[];

   values: Field[];

    marks: Mark[];
  filters: Filter[];
    sorts: Sort[];
}





QUERIES

a beautiful chart



PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}

QUERIES

a beautiful query



EXAMPLE

day on the x axis

PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}



EXAMPLE

values field on 
the y axis

PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}



EXAMPLE

sum of price and a 
running sum of 
quantity in values

PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}



EXAMPLE

a single layer so 
we’ve got one 
mark

PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}



EXAMPLE

defined by our 
values field

PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}



EXAMPLE

within that layer we 
want to see two 
distinct series each 
with its own color 
so we add names 
to our color 
channel

PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}



PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}



over time it becomes second nature



once we learn to speak the language our 
ability to quickly transform and visualize 
data is increased by 10x



challenge number three



CHALLENGE #3

our datasets are millions and billions of rows 
and growing



CHALLENGE #3

we can’t constantly move it around or try to 
materialize everything we might need to analyze 
ahead of time



CHALLENGE #3

we should work with our data as it exists 
in the places where it already lives



Introducing Processors



they’re the secret sauce



they make it possible for our data apps to take 
advantage of the high performance and massive 
scale of the databases we already have



they’re our database’s analytical co-pilots



what do we mean by that?



let’s talk about how they work



PROCESSORS

processors take 
in queries and 
compute results

Query ExecutionPlanning Result

Relational
Database



PROCESSORS

we start with a 
query like the 
one we saw in 
the last section

Query ExecutionPlanning Result

Relational
Database



PROCESSORS

we build a 
plan, which is 
a set of 
instructions 
for processing 
that query

Query ExecutionPlanning Result

Relational
Database



PROCESSORS

that plan gets 
passed along 
to the next 
step where it’s 
executed by 
the processor

Query ExecutionPlanning Result

Relational
Database



PROCESSORS

during 
execution, the 
processor will 
issue queries 
against our 
database

Query ExecutionPlanning Result

Relational
Database



PROCESSORS

it’ll take those 
intermediate 
query results 
and process 
them further to 
produce a final 
result

Query ExecutionPlanning Result

Relational
Database



PROCESSORS

the last step is 
taking the final 
result and 
sending it back 
to our app

Query ExecutionPlanning Result

Relational
Database



let’s look at how planning works first



the planner looks at our query in a specific 
order and builds a logical execution plan



PROCESSORS

we go through 
the fields in 
each channel

2
Names/
Values

4
Sorts

3
Filters

5
Limit/
Offset

1
Fields



PROCESSORS

if we have 
names or 
values fields 
we add those 
to the plan

2
Names/
Values

4
Sorts

3
Filters

5
Limit/
Offset

1
Fields



PROCESSORS

after that we 
plan all of the 
filters

2
Names/
Values

4
Sorts

3
Filters

5
Limit/
Offset

1
Fields



PROCESSORS

followed by 
sorts

2
Names/
Values

4
Sorts

3
Filters

5
Limit/
Offset

1
Fields



PROCESSORS

finally we add 
a limit or offset 
if they’re part 
of the query

2
Names/
Values

4
Sorts

3
Filters

5
Limit/
Offset

1
Fields



as we go through each step the planner 
decides what parts of the query we want to 
process in the database and what we want to 
process on the “client”



how does it decide?



the planner always decides to “push-down” 
grouping and aggregate expressions and 
“pull-up” analytical expressions





Field
1 + RUNNING_AVG(SUM([Price]) + 1)
               

DATAFLOW

let’s say we’ve got 
this field in our 
query



Field
1 + RUNNING_AVG(SUM([Price]) + 1)
               |________________|

DATAFLOW

this is an 
aggregate 
expression



Field
1 + RUNNING_AVG(SUM([Price]) + 1)
               |________________|

DATAFLOW

an aggregate 
expression is any 
aggregate function 
and the operators 
attached to it



Field
1 + RUNNING_AVG(SUM([Price]) + 1)
|______________|

DATAFLOW

this is an 
analytic 
expression



Field
1 + RUNNING_AVG(SUM([Price]) + 1)
|______________|

DATAFLOW

an analytic 
expression is any 
analytic function 
and the operators 
attached to it  



Field
1 + RUNNING_AVG(SUM([Price]) + 1)

Push-Down
?

Pull-Up
?

DATAFLOW

the planner will 
split this field into 
two parts



Field
1 + RUNNING_AVG(SUM([Price]) + 1)

Push-Down
SUM([Price]) + 1 AS C1

Pull-Up
?

DATAFLOW

the aggregate 
expression gets 
pushed down to 
the database



Field
1 + RUNNING_AVG(SUM([Price]) + 1)

Push-Down
SUM([Price]) + 1 AS C1

Pull-Up
1 + RUNNING_SUM([C1])

DATAFLOW

the analytic 
expression gets 
pulled up to the 
processor



Field
1 + RUNNING_AVG(SUM([Price]) + 1)

Push-Down
SUM([Price]) + 1 AS C1

Pull-Up
1 + RUNNING_SUM([C1])

DATAFLOW

expressions that 
are pushed down 
get a unique alias 
that we use to 
reference the 
results



why don’t we do everything in the database?



organizations operate dozens of
databases across almost as many vendors



we want a common data processing model that 
we can rely on across all of the apps in our 
organization



as long as our databases can do basic 
stuff like select, group, aggregate, filter,
and sort, we can handle the rest





PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}

EXECUTION

we’re going to 
walk through how 
we would execute 
the plan for our 
beautiful query



PROCESSORS

execute our 
pushed down 
query against 
our relational 
database

ResultSQL 
Query

Fold
Names
Values

Analytic 
Evaluation

ResultSelection



EXECUTION

we’ve got three 
expressions here 
that get pushed 
down

PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}



EXECUTION

day on our x-axis

PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}



EXECUTION

sum of price on 
values

PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}



EXECUTION

sum of quantity 
also from values

PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}



SELECT DATETRUNC('day', date) AS C1
       SUM(price) AS C2,
       SUM(quantity) AS C3
  FROM orders
 GROUP BY DATETRUNC('day', date)

EXECUTION

that gives us this 
beautiful sql query



EXECUTION

the table name 
comes from a data 
model which let’s 
the processor know 
about our database 
schema

SELECT DATETRUNC('day', date) AS C1
       SUM(price) AS C2,
       SUM(quantity) AS C3
  FROM orders
 GROUP BY DATETRUNC('day', date)



EXECUTION

this is what 
our database 
hands back

DAY(Date) SUM(price) SUM(quantity)

2019-01-01 10 15

2019-01-02 5 5

... ... ...



PROCESSORS

we take that  
and evaluate 
our analytic 
expressions

ResultSQL 
Query

Fold
Names
Values

Analytic 
Evaluation

ResultSelection



EXECUTION

+ running_sum

DAY(Date) SUM(price) SUM(quantity) RUNNING_SUM(quantity)

2019-01-01 10 15 15

2019-01-02 5 5 20

... ... ...



PROCESSORS

we use a fold 
transform to 
“unpivot” the 
result

ResultSQL 
Query

Fold
Names
Values

Analytic 
Evaluation

ResultSelection



Names Values DAY
(Date)

SUM
(price)

SUM
(quantity)

RUNNING_SUM
(quantity)

SUM(price) 10 2019-01-01 10 15 15

RUNNING_SUM
(quantity)

15 2019-01-01 10 5 15

SUM(price) 5 2019-01-02 5 15 20

RUNNING_SUM
(quantity)

20 2019-01-02 5 5 20

... ... ... ... ...

EXECUTION

+ names
+ values

expand the 
number of rows



PROCESSORS

we select just 
the fields that 
we want in our 
result

ResultSQL 
Query

Fold
Names
Values

Analytic 
Evaluation

ResultSelection



Names Values DAY(Date)

SUM(price) 10 2019-01-01

RUNNING_SUM(quantity) 15 2019-01-01

SUM(price) 5 2019-01-02

RUNNING_SUM(quantity) 20 2019-01-02

... ... ...

EXECUTION

- sum price
- sum quantity
- running_sum



PROCESSORS

results go back 
to the app

ResultSQL 
Query

Fold
Names
Values

Analytic 
Evaluation

ResultSelection



Names Values DAY(Date)

SUM(price) 10 2019-01-01

RUNNING_SUM(quantity) 15 2019-01-01

SUM(price) 5 2019-01-02

RUNNING_SUM(quantity) 20 2019-01-02

... ... ...

PivotQuery {
  x: [ “DATETRUNC(‘day’, [Date])” ],
  y: [ “$[Values]” ],
  values: [
    “SUM([Price])”,
    “RUNNING_SUM(SUM([Quantity]))”
  ],
  marks: [{
    field: “$[Values]”,
    color: [ “$[Names]” ]
  }]
}



and that’s how the tables turn



this strategy pays big dividends



not having to move data around or materialize 
all of our views ahead of time lets us effectively 
use 1000x more data



where does that bring us?



a familiar excel-like formula language that 
lets our users explore data in different ways 
without new etl pipelines or app code



100x



a visual query language that lets us ask for 
the data we need in a way that matches the 
visualizations we’re trying deliver



10x



data processors that let us deploy our 
visualization queries on top of the high 
performance databases we already have



1000x





1,000,000x



a game changer for data teams and decision makers



where are we going to go from here?



ROADMAP

where are
we going
from here?

● Release the code under open license
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ROADMAP

where are
we going
from here?

● Release the code under open license

● Expand the built-in function library

● Build out more real-world examples

● Expand our database adapter library

● Integrate with open tools like DBT

● Integrate with libraries like vega-lite

● Build common components for frameworks 

like angular, react, native, etc.



COMMUNITY

how do I get involved?



COMMUNITY

head on over herewe   
github.com/switch-data/community



COMMUNITY

AND HIT THE STAR BUTTONNN 
github.com/switch-data/community



COMMUNITY

how can I help you?





thank you again



Q&A

Come see me during office hours!


