
Introducing Switch:
a framework for custom
data applications

Josh Ferguson
Chief Architect @ Mode

josh@modeanalytics.com

we’re going to talk about building tools to
make better decisions with data

i’ve been obsessed with building
data tools for about 20 years

@besquared almost everywhere

mode(.com)

a collaborative data science platform

our users are data scientists, analysts, and engineers

help everybody make better decisions with data

we’re here to talk about data applications

custom data applications

what’s a custom data application?

BUSINESS OPERATIONS
(SORTED BY SPECIFICITY)

well supported by
companies and tools

this long tail is our
competitive advantage

INDUSTRY
STANDARD

DOMAIN
SPECIFIC

LEVEL OF
OFF-THE-SHELF
TOOL SUPPORT

there's no collection of off-the-shelf tools that
will provide everything our organization needs
to make better decisions with data

this is where we should focus

logistics tracking and monitoring

customer health monitoring tools for success

a/b testing tools for our product team

...

everyone one of these apps is a one-off today

switch is a collection of typescript libraries
and tools that let us build richer and more
interactive data applications

the data layer between our database and
our user interface

it lets us address some of the major
challenges we face when we’re building
our data apps

challenge number one

CHALLENGE #1

our users always want to slice and dice their data
in ways that we don’t anticipate

CHALLENGE #1

we don’t know what we’ll need ahead of time

CHALLENGE #1

we can’t build a new etl pipeline or deploy
our app every time we need to answer a
slightly different question

CHALLENGE #1

we should give our users the tools they
need to quickly and easily express data in
new and different ways on their own

Introducing Formulas

an excel-like language for data expression

they let our users build custom calculations,
even if they’re not database or programming
language experts

what can they do with them?

unlike excel whose formulas operate on cells,
our formulas operate on entire datasets at a time

FORMULAS

sample dataset

ID Date Product Quantity Price Filled

1 2019-01-01 A 10 10.00 true

2 2019-01-02 B 5 20.00 false

...

[Price] / [Quantity]

EXAMPLES

calculate ratios!

Dollar to cents

[Price] * 100

EXAMPLES

convert units!

CASE [Product]
WHEN “A,”
THEN “A”
ELSE [Product]
 END

EXAMPLES

clean data!

AVG([Price] / [Quantity])

EXAMPLES

aggregate data!

LOOKUP(AVG([Price]), FIRST())

EXAMPLES

lookup values!

what else!?

NULL

LITERALS

nulls

TRUE

FALSE

LITERALS

booleans

-42

1000

3.1415926

0xBEEF

LITERALS

numbers

‘Category’

“Product Name”

LITERALS

strings

#2019-04-18#

#2019-04-18T10:50:15#

LITERALS

dates

/[\w\d]+/ig

LITERALS

regular
expressions

[Product]
[Quantity]

ACCESS

data access

[Quantity] * 500
[Quantity] / 500
[Quantity] + 500
[Quantity] - 500
[Quantity] % 500

OPERATORS

mathematic

[Quantity] = 500
[Quantity] <> 500
[Quantity] < 500
[Quantity] <= 500
[Quantity] > 500
[Quantity] >= 500

OPERATORS

relational

NOT [Filled]
[Filled] AND [Quantity] > 500
[Filled] OR [Quantity] <= 500

OPERATORS

logical

CASE [Filled]
WHEN TRUE
THEN “Filled”
WHEN FALSE
THEN “Unfilled”
ELSE “Unknown”
 END

CONDITIONAL

case

NOW()

FUNCTIONS

constant

FLOOR([Price])

TRIM([Product])

DATETRUNC(‘day’, [Date])

FUNCTIONS

scalar

SUM([Price])

AVG([Quantity])

COUNTD([Product])

FUNCTIONS

aggregate

RANK(SUM([Quantity]))

RUNNING_SUM(COUNT([Price]))

LOOKUP(AVG([Price]), FIRST())

FUNCTIONS

analytic

that’s it, simple and powerful

we can build interfaces that let users
extend our apps with their own business
logic and calculations

for example at Mode we’re working on a
formula editor that lets our users add
custom calculations to their visualizations

a single formula that takes someone a few
minutes to write might take hours or days
to implement and deploy otherwise

not having to build etl pipelines or write app
code every time we want to answer a
different question amplifies our effort 100x

that’s pretty rad

let’s keep going and see how we use formulas
to query our data

challenge number two

CHALLENGE #2

getting from data to visualization

CHALLENGE #2

a common characteristic of custom data apps is
custom data visualizations

CHALLENGE #2

we don’t want to write ad-hoc data
transformation code every time we want to
build a visualization

CHALLENGE #2

we should use a language that let’s us describe
the data we need in way that matches the
visualizations we’re trying to build

Introducing Queries

our queries speak the language of data visualization

QUERIES

grammar
of graphics

most of the visualizations that we can
encode with tools like vega-lite can be
translated directly into switch queries

how do they work?

we define the data we want in our query

Field {
 formula: string;
}

QUERIES

we use fields
which are defined
with a formula

Field {
 formula: string;
}

QUERIES

they let us
describe the data
and calculations
we want to get
back in our query
result

“SUM([Quantity])”

“[Price] / [Quantity]”

“DATETRUNC(‘day’, [Date])”

QUERIES

they’re the atomic
unit of data in a
query

Names {
 formula: “$[Names]”;
}

Values {
 formula: “$[Values]”;
}

QUERIES

there are two
pre-defined fields
called names and
values

NAMES/VALUES

they let us combine
multiple aggregate
fields together into
a single field

Names {
 formula: “$[Names]”;
}

Values {
 formula: “$[Values]”;
}

QUERIES

we’ve got filters Filter {
 field: Field;
 conds: Conditions;
}

QUERIES

they let us get rid
of data we don’t
want by adding
conditions on our
fields

Filter {
 field: Field;
 conds: Conditions;
}

QUERIES

we’ve got sorts Sort {
 field: Field;
 type: SortType;
 order: SortOrder;
}

QUERIES

they let us
re-arrange our
result by adding
orders to our fields

Sort {
 field: Field;
 type: SortType;
 order: SortOrder;
}

we map our data to our visualization

QUERIES

the first way to do
that is with marks

Mark {
 field: Field;
 color: Field[];
 size: Field[];
 label: Field[];
 ...
}

QUERIES

marks are how we
describe the layers
of our visualization

Mark {
 field: Field;
 color: Field[];
 size: Field[];
 label: Field[];
 ...
}

MARKS

every layer is
defined by a
single field

Mark {
 field: Field;
 color: Field[];
 size: Field[];
 label: Field[];
 ...
}

MARKS

it’s got channels
like color, size,
and label, that let
us map fields to
visual properties

Mark {
 field: Field;
 color: Field[];
 size: Field[];
 label: Field[];
 ...
}

MARKS

we can map as
many channels as
we want based on
the needs of our
visualization

Mark {
 field: Field;
 color: Field[];
 size: Field[];
 label: Field[];
 ...
}

QUERIES

using marks and
the other pieces
we talked about
we can build a
complete visual
mapping which we
call a pivot query

PivotQuery {
 column: Field[];
 x: Field[];
 row: Field[];
 y: Field[];

 values: Field[];

 marks: Mark[];
 filters: Filter[];
 sorts: Sort[];
}

QUERIES

marks, filters, and
sorts

PivotQuery {
 column: Field[];
 x: Field[];
 row: Field[];
 y: Field[];

 values: Field[];

 marks: Mark[];
 filters: Filter[];
 sorts: Sort[];
}

PIVOT QUERY

more channels

PivotQuery {
 column: Field[];
 x: Field[];
 row: Field[];
 y: Field[];

 values: Field[];

 marks: Mark[];
 filters: Filter[];
 sorts: Sort[];
}

PIVOT QUERY

column and row
which let us facet
data across or
down our
visualization

PivotQuery {
 column: Field[];
 x: Field[];
 row: Field[];
 y: Field[];

 values: Field[];

 marks: Mark[];
 filters: Filter[];
 sorts: Sort[];
}

PIVOT QUERY

x and y which let
us position data
across or down
our visualization
within those facets

PivotQuery {
 column: Field[];
 x: Field[];
 row: Field[];
 y: Field[];

 values: Field[];

 marks: Mark[];
 filters: Filter[];
 sorts: Sort[];
}

PIVOT QUERY

values which let’s
us combine all of
the fields in it into
a single field that
we can use in the
other channels

PivotQuery {
 column: Field[];
 x: Field[];
 row: Field[];
 y: Field[];

 values: Field[];

 marks: Mark[];
 filters: Filter[];
 sorts: Sort[];
}

QUERIES

a beautiful chart

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

QUERIES

a beautiful query

EXAMPLE

day on the x axis

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

EXAMPLE

values field on
the y axis

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

EXAMPLE

sum of price and a
running sum of
quantity in values

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

EXAMPLE

a single layer so
we’ve got one
mark

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

EXAMPLE

defined by our
values field

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

EXAMPLE

within that layer we
want to see two
distinct series each
with its own color
so we add names
to our color
channel

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

over time it becomes second nature

once we learn to speak the language our
ability to quickly transform and visualize
data is increased by 10x

challenge number three

CHALLENGE #3

our datasets are millions and billions of rows
and growing

CHALLENGE #3

we can’t constantly move it around or try to
materialize everything we might need to analyze
ahead of time

CHALLENGE #3

we should work with our data as it exists
in the places where it already lives

Introducing Processors

they’re the secret sauce

they make it possible for our data apps to take
advantage of the high performance and massive
scale of the databases we already have

they’re our database’s analytical co-pilots

what do we mean by that?

let’s talk about how they work

PROCESSORS

processors take
in queries and
compute results

Query ExecutionPlanning Result

Relational
Database

PROCESSORS

we start with a
query like the
one we saw in
the last section

Query ExecutionPlanning Result

Relational
Database

PROCESSORS

we build a
plan, which is
a set of
instructions
for processing
that query

Query ExecutionPlanning Result

Relational
Database

PROCESSORS

that plan gets
passed along
to the next
step where it’s
executed by
the processor

Query ExecutionPlanning Result

Relational
Database

PROCESSORS

during
execution, the
processor will
issue queries
against our
database

Query ExecutionPlanning Result

Relational
Database

PROCESSORS

it’ll take those
intermediate
query results
and process
them further to
produce a final
result

Query ExecutionPlanning Result

Relational
Database

PROCESSORS

the last step is
taking the final
result and
sending it back
to our app

Query ExecutionPlanning Result

Relational
Database

let’s look at how planning works first

the planner looks at our query in a specific
order and builds a logical execution plan

PROCESSORS

we go through
the fields in
each channel

2
Names/
Values

4
Sorts

3
Filters

5
Limit/
Offset

1
Fields

PROCESSORS

if we have
names or
values fields
we add those
to the plan

2
Names/
Values

4
Sorts

3
Filters

5
Limit/
Offset

1
Fields

PROCESSORS

after that we
plan all of the
filters

2
Names/
Values

4
Sorts

3
Filters

5
Limit/
Offset

1
Fields

PROCESSORS

followed by
sorts

2
Names/
Values

4
Sorts

3
Filters

5
Limit/
Offset

1
Fields

PROCESSORS

finally we add
a limit or offset
if they’re part
of the query

2
Names/
Values

4
Sorts

3
Filters

5
Limit/
Offset

1
Fields

as we go through each step the planner
decides what parts of the query we want to
process in the database and what we want to
process on the “client”

how does it decide?

the planner always decides to “push-down”
grouping and aggregate expressions and
“pull-up” analytical expressions

Field
1 + RUNNING_AVG(SUM([Price]) + 1)

DATAFLOW

let’s say we’ve got
this field in our
query

Field
1 + RUNNING_AVG(SUM([Price]) + 1)
 |________________|

DATAFLOW

this is an
aggregate
expression

Field
1 + RUNNING_AVG(SUM([Price]) + 1)
 |________________|

DATAFLOW

an aggregate
expression is any
aggregate function
and the operators
attached to it

Field
1 + RUNNING_AVG(SUM([Price]) + 1)
|______________|

DATAFLOW

this is an
analytic
expression

Field
1 + RUNNING_AVG(SUM([Price]) + 1)
|______________|

DATAFLOW

an analytic
expression is any
analytic function
and the operators
attached to it

Field
1 + RUNNING_AVG(SUM([Price]) + 1)

Push-Down
?

Pull-Up
?

DATAFLOW

the planner will
split this field into
two parts

Field
1 + RUNNING_AVG(SUM([Price]) + 1)

Push-Down
SUM([Price]) + 1 AS C1

Pull-Up
?

DATAFLOW

the aggregate
expression gets
pushed down to
the database

Field
1 + RUNNING_AVG(SUM([Price]) + 1)

Push-Down
SUM([Price]) + 1 AS C1

Pull-Up
1 + RUNNING_SUM([C1])

DATAFLOW

the analytic
expression gets
pulled up to the
processor

Field
1 + RUNNING_AVG(SUM([Price]) + 1)

Push-Down
SUM([Price]) + 1 AS C1

Pull-Up
1 + RUNNING_SUM([C1])

DATAFLOW

expressions that
are pushed down
get a unique alias
that we use to
reference the
results

why don’t we do everything in the database?

organizations operate dozens of
databases across almost as many vendors

we want a common data processing model that
we can rely on across all of the apps in our
organization

as long as our databases can do basic
stuff like select, group, aggregate, filter,
and sort, we can handle the rest

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

EXECUTION

we’re going to
walk through how
we would execute
the plan for our
beautiful query

PROCESSORS

execute our
pushed down
query against
our relational
database

ResultSQL
Query

Fold
Names
Values

Analytic
Evaluation

ResultSelection

EXECUTION

we’ve got three
expressions here
that get pushed
down

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

EXECUTION

day on our x-axis

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

EXECUTION

sum of price on
values

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

EXECUTION

sum of quantity
also from values

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

SELECT DATETRUNC('day', date) AS C1
 SUM(price) AS C2,
 SUM(quantity) AS C3
 FROM orders
 GROUP BY DATETRUNC('day', date)

EXECUTION

that gives us this
beautiful sql query

EXECUTION

the table name
comes from a data
model which let’s
the processor know
about our database
schema

SELECT DATETRUNC('day', date) AS C1
 SUM(price) AS C2,
 SUM(quantity) AS C3
 FROM orders
 GROUP BY DATETRUNC('day', date)

EXECUTION

this is what
our database
hands back

DAY(Date) SUM(price) SUM(quantity)

2019-01-01 10 15

2019-01-02 5 5

...

PROCESSORS

we take that
and evaluate
our analytic
expressions

ResultSQL
Query

Fold
Names
Values

Analytic
Evaluation

ResultSelection

EXECUTION

+ running_sum

DAY(Date) SUM(price) SUM(quantity) RUNNING_SUM(quantity)

2019-01-01 10 15 15

2019-01-02 5 5 20

...

PROCESSORS

we use a fold
transform to
“unpivot” the
result

ResultSQL
Query

Fold
Names
Values

Analytic
Evaluation

ResultSelection

Names Values DAY
(Date)

SUM
(price)

SUM
(quantity)

RUNNING_SUM
(quantity)

SUM(price) 10 2019-01-01 10 15 15

RUNNING_SUM
(quantity)

15 2019-01-01 10 5 15

SUM(price) 5 2019-01-02 5 15 20

RUNNING_SUM
(quantity)

20 2019-01-02 5 5 20

...

EXECUTION

+ names
+ values

expand the
number of rows

PROCESSORS

we select just
the fields that
we want in our
result

ResultSQL
Query

Fold
Names
Values

Analytic
Evaluation

ResultSelection

Names Values DAY(Date)

SUM(price) 10 2019-01-01

RUNNING_SUM(quantity) 15 2019-01-01

SUM(price) 5 2019-01-02

RUNNING_SUM(quantity) 20 2019-01-02

...

EXECUTION

- sum price
- sum quantity
- running_sum

PROCESSORS

results go back
to the app

ResultSQL
Query

Fold
Names
Values

Analytic
Evaluation

ResultSelection

Names Values DAY(Date)

SUM(price) 10 2019-01-01

RUNNING_SUM(quantity) 15 2019-01-01

SUM(price) 5 2019-01-02

RUNNING_SUM(quantity) 20 2019-01-02

...

PivotQuery {
 x: [“DATETRUNC(‘day’, [Date])”],
 y: [“$[Values]”],
 values: [
 “SUM([Price])”,
 “RUNNING_SUM(SUM([Quantity]))”
],
 marks: [{
 field: “$[Values]”,
 color: [“$[Names]”]
 }]
}

and that’s how the tables turn

this strategy pays big dividends

not having to move data around or materialize
all of our views ahead of time lets us effectively
use 1000x more data

where does that bring us?

a familiar excel-like formula language that
lets our users explore data in different ways
without new etl pipelines or app code

100x

a visual query language that lets us ask for
the data we need in a way that matches the
visualizations we’re trying deliver

10x

data processors that let us deploy our
visualization queries on top of the high
performance databases we already have

1000x

1,000,000x

a game changer for data teams and decision makers

where are we going to go from here?

ROADMAP

where are
we going
from here?

● Release the code under open license

ROADMAP

where are
we going
from here?

● Release the code under open license

● Expand the built-in function library

ROADMAP

where are
we going
from here?

● Release the code under open license

● Expand the built-in function library

● Build out more real-world examples

ROADMAP

where are
we going
from here?

● Release the code under open license

● Expand the built-in function library

● Built out more real-world examples

● Expand our database adapter library

ROADMAP

where are
we going
from here?

● Release the code under open license

● Expand the built-in function library

● Build out more real-world examples

● Expand our database adapter library

● Integrate with open tools like DBT

ROADMAP

where are
we going
from here?

● Release the code under open license

● Expand the built-in function library

● Build out more real-world examples

● Expand our database adapter library

● Integrate with open tools like DBT

● Integrate with libraries like vega-lite

ROADMAP

where are
we going
from here?

● Release the code under open license

● Expand the built-in function library

● Build out more real-world examples

● Expand our database adapter library

● Integrate with open tools like DBT

● Integrate with libraries like vega-lite

● Build common components for frameworks

like angular, react, native, etc.

COMMUNITY

how do I get involved?

COMMUNITY

head on over herewe
github.com/switch-data/community

COMMUNITY

AND HIT THE STAR BUTTONNN
github.com/switch-data/community

COMMUNITY

how can I help you?

thank you again

Q&A

Come see me during office hours!

