End-to-end Exactly-once
Aggregation over Ad Streams

Amiraj Dhawan 1 Amit Ramesh
s
... yelp%®
DE2EEH@)
Al =1
o|aonn oopnn
E EEE OO0B008
allnng 000008 =
E EEE — S l?l\ L] @Data Council
L aaggp, || |
00 OOTEEEETEE (Egt T




@

Yelp’s Mission
Connecting people with great
local businesses.




Outline

e Background & context

e Business requirements
e Design iterations

e Exactly-once aggregation

e \What's next?



Local Ads
e Work done within the Local Ads group

Manage a few 100K ad campaigns daily

Mom and pop stores to national chains
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e

ines receive a few thousand msgs/sec

ines in production for more than a year



Local Ads - Consumer facing
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Local Ads - Advertiser facing
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Local Ads - Ad Campaign Management
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Distilled Business Requirements

o Aggregate events over a day period

e Slice aggregates along defined dimensions
e Provide partial aggregates as day progresses

e Make aggregates as accurate as possible

Day | Dimension | Dimension | Dimension | Aggregate Aggregate | Aggregate
1 2 N 1 2 M




An lllustrative Example

e Count ad clicks over a day period

e Provide click counts by ad campaign

e Provide partial click counts as day progresses
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4/17/2019 23265 35 4/17/2019 23265 42



Stream Processing 101

Input Stream(s) - ~ Output Stream(s)

Stream Processing Engine
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Stream Processing 101

Input Stream(s)

e ~ Output Stream(s)

Stream Processing Engine
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Windowed operations
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Why not...
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4/17/2019 23265 35
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e Need partial click counts as day progresses!

e Stateful operation



How about...

Processing
pipeline
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Day Campaign ID  Number of clicks
4/17/2019 23265 35




How about...
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L Day Campaign ID  Number of clicks

4/17/2019 23265 35
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e (Cassandra has a Counter column type

e Integer type with increment and decrement



However...

e Counter is not meant

to be idempotent

e Good for approximate metrics (likes/follows)

e Reported discrepancies of up to 5%

e Discrepancies due to

peing distributed

e No plans to make itic

empotent



Alright...
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Processing | 2, *+A
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4/17/2019 23265 35
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e Use Cassandra for the current count

e Incrementin Spark and update Cassandra



Kafka 101

Partitions e Data is in partitions

1098 76543 210

Offcats Partition is ordered

1098 765432 104

e Consumers track
their own progress

1098 765432 10




Spark Streaming 101
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e Micro-batching
e No pipelining

e App manages
offset commits



Putting them together
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Kafka Offset Commit
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In the words of Ken Arnold

Failure is the defining difference between distributed and
local programming, so you have to design distributed

systems with the expectation of failure. imagine asking people, "If
the probability of something happening is one in ten to the thirteenth, how
often would it happen?" Your natural human sense would be to answer,
"Never." That is an infinitely large number in human terms. But if you ask a
physicist, she would say, "All the time. In a cubic foot of air, those things happen

all the time." When you design distributed systems, you have to
say, "Failure happens all the time." So when you design, you
design for failure. It is your number one concern.



Failure Modes
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Kafka Offset Commit
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Failure Modes
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At Least + At Most = Exactly-once

e Should be able to distinguish processed data
e \ersioning rows is one way to do it

e \ersions need to be monotonically increasing
e Data in Kafka partitions are already ordered

e \ersioning can leverage data order



Basic Idea
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Basic Idea
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Basic Idea
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Exactly-once Aggregation
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Exactly-once Aggregation
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Exactly-once Aggregation
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Exactly-once Aggregation
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Generalization

def agg func(partial agg, new val):
new agg = ...
return new_agg

e Aggregation logic is in the pipeline
e Logic can be arbitrarily complex
e Does not have to be a mathematical function

e Strings, sets, lists, maps, etc.



What's next?

e Windowed joins

o As a specialization of aggregation
o Allows for arbitrary business rules in joins

e Deduplication within aggregation

o Input streams can typically have duplicates
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0 fb.com/YelpEngineers
Q @YelpEngineering
@ engineeringblog.yelp.com

Q github.com/yelp



