End-to-end Exactly-once
Aggregation over Ad Streams

Amiraj Dhawan 1 Amit Ramesh
s
... yelp%®
DE2EEH@)
Al =1
o|aonn oopnn
E EEE OO0B008
allnng 000008 =
E EEE — S l?l\ L] @Data Council
L aaggp, || |
00 OOTEEEETEE (Egt T

@

Yelp’s Mission
Connecting people with great
local businesses.

Outline

e Background & context

e Business requirements
e Design iterations

e Exactly-once aggregation

e \What's next?

Local Ads
e Work done within the Local Ads group

Manage a few 100K ad campaigns daily

Mom and pop stores to national chains

P

P

e

e

ines receive a few thousand msgs/sec

ines in production for more than a year

Local Ads - Consumer facing

3 Q0O 4R 11:01

Q Thai Food

Price °°> OpenNow Order Delivery Order Picku

>

—— — — — — — —
Aroy Thai Bistro 1 mi \
89 Reviews $
506 SW 4th Ave, Southwest Portland |
Thai
Thai Lily Restaurant 7.5 mi |
52 Reviews $$ |

1. Thai Champa .6mi
o B 168 Reviews $
@ 4 900 E Burnside St, Buckman

Thai, Food Trucks

g ‘ 2. Nong's Khao Man Gai 6mi
U nﬂnn: 828 Reviews S

609 SE Ankeny St, Ste C, Industrial District
- Thai, Chicken Shop

s 3. E-San Thai Food Cart 2mi

& 17 Reviews $
O Q ® A [
Nearby Search Profile Activity ~ Bookmarks

Local Ads - Advertiser facing

| a
I REPO RI
|)

|

|

|

|

|

|

| .

|

|

|

|

|

|

| ool .
|

|

|

|

|

|

Streaming

Local Ads - Ad Campaign Management
i i o

Distilled Business Requirements

o Aggregate events over a day period

e Slice aggregates along defined dimensions
e Provide partial aggregates as day progresses

e Make aggregates as accurate as possible

Day | Dimension | Dimension | Dimension | Aggregate Aggregate | Aggregate
1 2 N 1 2 M

An lllustrative Example

e Count ad clicks over a day period

e Provide click counts by ad campaign

e Provide partial click counts as day progresses
5\\\\“'1'2//% RN

|
|
Day Campaign ID Number of clicks | Day Campaign ID Number of clicks
|
|
I
|
|

4/17/2019 23265 35 4/17/2019 23265 42

Stream Processing 101

Input Stream(s) - ~ Output Stream(s)

Stream Processing Engine

\ J
kafka 0
% .S‘pcwr‘l'zz m

#1a amazon Streaming

= KINESIS E éredis

Stream Processing 101

Input Stream(s)

e ~ Output Stream(s)

Stream Processing Engine

“.
7

‘w

N cassandra
L 2]

R

“E

|

Windowed operations

—_—_—————e— e e e | e —— — —

Tumbling window

—_—_———,—,e e ——————_ e e e — e — — — — — —

Sliding window

Why not...

—_—————— —

—_————————

R e —_

S S

Processing
pipeline

2
Day Campaign ID Number of clicks
4/17/2019 23265 35

Vs > A

=" O] IO
1]| % TEIT T

N
{ : @
_________________ \ Processing

: ! pipeline
“““ 1’ - Day Campaign ID Number of clicks

4/17/2019 23265 35
J

e Need partial click counts as day progresses!

e Stateful operation

How about...

Processing
pipeline

A's
Day Campaign ID Number of clicks
4/17/2019 23265 35

How about...

-
(: @
Processing

pipeline
L Day Campaign ID Number of clicks

4/17/2019 23265 35
J

e (Cassandra has a Counter column type

e Integer type with increment and decrement

However...

e Counter is not meant

to be idempotent

e Good for approximate metrics (likes/follows)

e Reported discrepancies of up to 5%

e Discrepancies due to

peing distributed

e No plans to make itic

empotent

Alright...

N
Processing | 2, *+A

pipeline
L Day Campaign ID Number of clicks

4/17/2019 23265 35
J

e Use Cassandra for the current count

e Incrementin Spark and update Cassandra

Kafka 101

Partitions e Data is in partitions

1098 76543 210

Offcats Partition is ordered

1098 765432 104

e Consumers track
their own progress

1098 765432 10

Spark Streaming 101

~

:

.S’pcwr‘lzZ

Streaming

~

e Micro-batching
e No pipelining

e App manages
offset commits

Putting them together

~

Kafka Offset Commit

g

Stage 3

2,4

In the words of Ken Arnold

Failure is the defining difference between distributed and
local programming, so you have to design distributed

systems with the expectation of failure. imagine asking people, "If
the probability of something happening is one in ten to the thirteenth, how
often would it happen?" Your natural human sense would be to answer,
"Never." That is an infinitely large number in human terms. But if you ask a
physicist, she would say, "All the time. In a cubic foot of air, those things happen

all the time." When you design distributed systems, you have to
say, "Failure happens all the time." So when you design, you
design for failure. It is your number one concern.

Failure Modes

~

Kafka Offset Commit

Stage 1

>

M

g

Stage 3

2,4

Failure Modes

~

Kafka Offset Commit

Stage 1

>

Stage 2

M

g

Stage 3

2,4

Failure Modes

~

Kafka Offset Commit

Stage 1

>

M

g

Stage 3

Failure Modes

~

Kafka Offset Commit

Stage 1

>

M

g

Stage 3

2,4

At Least + At Most = Exactly-once

e Should be able to distinguish processed data
e \ersioning rows is one way to do it

e \ersions need to be monotonically increasing
e Data in Kafka partitions are already ordered

e \ersioning can leverage data order

Basic Idea

5 4 3 2 1 0
ID:5 | ID:5 | ID:5 |ID:5 |ID:5 | ID:5
CLK CLK | CLK | CLK

TCommit

Day

4/17/2019

<«— Offset

Campaign
ID

5

Number of
clicks

3

Version

Basic Idea

5 4 3 2 1 0
ID:5 |ID:9 |ID:5 |ID:5 [ID:9 | ID:9
CLK CLK |CLK | CLK

TCommit

Day

4/17/2019

4/17/2019

<«— Offset

Campaign
ID

5
9

Number of
clicks

1
2

Version

Basic Idea

5 4 3 2 1 0
ID:5 | ID:9 |[ID:9 |ID:5 |ID:5 | ID:9
CLK CLK CLK | CLK

Partition O T

5 4 3 2 1 0
ID:5 |ID:9 |ID:5 |ID:5 [ID:9 | ID:9
CLK CLK |CLK | CLK

Partition 1

Day

4/17/2019

4/17/2019

Campaign
ID

5

9

Number of

clicks

2

Version

PO: 2

P1:3

PO: 0
P1: 1

Exactly-once Aggregation

e N\
Kafka Offset Commit

l ,| Stage 2
Ver A
—> 3, Ver, 2. +4,
5 » Ver,,,
Al t

Exactly-once Aggregation

~

Kafka Offset Commit

» Stage 2

Stage 3

Ver,,.

Exactly-once Aggregation

~

Kafka Offset Commit

» Stage 2

Exactly-once Aggregation

~

Kafka Offset Commit

» Stage 2

Exactly-once Aggregation

e N\
Kafka Offset Commit

l ,| Stage 2
Ver A
S o Ver 2.+ A,
5 » Ver,,,
Al t

Generalization

def agg func(partial agg, new val):
new agg = ...
return new_agg

e Aggregation logic is in the pipeline
e Logic can be arbitrarily complex
e Does not have to be a mathematical function

e Strings, sets, lists, maps, etc.

What's next?

e Windowed joins

o As a specialization of aggregation
o Allows for arbitrary business rules in joins

e Deduplication within aggregation

o Input streams can typically have duplicates

AN

...L..._w, ¢.
A5 4

0 fb.com/YelpEngineers
Q @YelpEngineering
@ engineeringblog.yelp.com

Q github.com/yelp

