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Yelp’s Mission
Connecting people with great

local businesses.



● Background & context

● Business requirements

● Design iterations

● Exactly-once aggregation

● What’s next?

Outline



Local Ads

● Work done within the Local Ads group

● Manage a few 100K ad campaigns daily

● Mom and pop stores to national chains

● Pipelines receive a few thousand msgs/sec

● Pipelines in production for more than a year



Local Ads – Consumer facing



Local Ads – Advertiser facing   



Local Ads – Ad Campaign Management  



Distilled Business Requirements

● Aggregate events over a day period

● Slice aggregates along defined dimensions

● Provide partial aggregates as day progresses

● Make aggregates as accurate as possible
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An Illustrative Example

● Count ad clicks over a day period

● Provide click counts by ad campaign

● Provide partial click counts as day progresses

Day Campaign ID Number of clicks

4/17/2019 23265 35

Day Campaign ID Number of clicks

4/17/2019 23265 42



Stream Processing 101

Stream Processing Engine

Database

Input Stream(s) Output Stream(s)



Stream Processing 101

Stream Processing Engine

Database

Input Stream(s) Output Stream(s)



Windowed operations

Tumbling window

Sliding window



Processing
pipeline

Why not...

Day Campaign ID Number of clicks

4/17/2019 23265 35

∑



Processing
pipeline

Why not...

Day Campaign ID Number of clicks

4/17/2019 23265 35

● Need partial click counts as day progresses!

● Stateful operation

∑



Processing
pipeline

How about...

Day Campaign ID Number of clicks

4/17/2019 23265 35

∆’s



Processing
pipeline

How about...

Day Campaign ID Number of clicks

4/17/2019 23265 35

∆’s

● Cassandra has a Counter column type

● Integer type with increment and decrement



However...

● Counter is not meant to be idempotent

● Good for approximate metrics (likes/follows)

● Reported discrepancies of up to 5%

● Discrepancies due to being distributed

● No plans to make it idempotent



Processing
pipeline

Alright...

Day Campaign ID Number of clicks

4/17/2019 23265 35

∑t + ∆

∑t 

● Use Cassandra for the current count

● Increment in Spark and update Cassandra



Kafka 101

10  9  8   7  6  5  4  3   2  1  0

10  9  8   7  6  5  4  3  2   1  0

10  9  8   7  6  5  4  3  2   1  0

Partitions

Offsets

● Data is in partitions

● Partition is ordered

● Consumers track
their own progress



Spark Streaming 101
● Micro-batching

● No pipelining

● App manages 
offset commits



Putting them together

∑t + ∆∑t 

∆

∑t

∑t + ∆

Kafka Offset Commit

Stage 1

Stage 2

Stage 3



In the words of Ken Arnold
Failure is the defining difference between distributed and 
local programming, so you have to design distributed 
systems with the expectation of failure. Imagine asking people, "If 
the probability of something happening is one in ten to the thirteenth, how 
often would it happen?" Your natural human sense would be to answer, 
"Never." That is an infinitely large number in human terms. But if you ask a 
physicist, she would say, "All the time. In a cubic foot of air, those things happen 
all the time." When you design distributed systems, you have to 
say, "Failure happens all the time." So when you design, you 
design for failure. It is your number one concern.



Failure Modes
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At Least + At Most = Exactly-once

● Should be able to distinguish processed data

● Versioning rows is one way to do it

● Versions need to be monotonically increasing

● Data in Kafka partitions are already ordered

● Versioning can leverage data order



Basic Idea
Day Campaign 

ID
Number of 

clicks
Version

4/17/2019 5 3 2

ID: 5
CLK

ID: 5 ID: 5 ID: 5
CLK

ID: 5
CLK

ID: 5
CLK

  5          4         3         2         1        0

Commit

Offset



Basic Idea

ID: 5
CLK

ID: 9 ID: 5 ID: 5
CLK

ID: 9
CLK

ID: 9
CLK

  5          4         3         2         1        0

Commit

Offset

Day Campaign 
ID

Number of 
clicks

Version

4/17/2019 5 1 2

4/17/2019 9 2 1



Basic Idea

Day Campaign 
ID

Number of 
clicks

Version

4/17/2019 5 2 P0: 2
P1: 3 

4/17/2019 9 3 P0: 0
P1: 1

ID: 5
CLK

ID: 9 ID: 9
CLK

ID: 5 ID: 5
CLK

ID: 9
CLK

  5          4         3         2         1        0

Partition 0

ID: 5
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ID: 9 ID: 5 ID: 5
CLK

ID: 9
CLK

ID: 9
CLK

  5          4         3         2         1        0

Partition 1



Exactly-once Aggregation
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Exactly-once Aggregation
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Generalization

● Aggregation logic is in the pipeline

● Logic can be arbitrarily complex

● Does not have to be a mathematical function

● Strings, sets, lists, maps, etc.



What’s next?
● Windowed joins

○ As a specialization of aggregation

○ Allows for arbitrary business rules in joins

● Deduplication within aggregation

○ Input streams can typically have duplicates



www.yelp.com/careers/
We're Hiring!



@YelpEngineering

fb.com/YelpEngineers

engineeringblog.yelp.com

github.com/yelp


