
1© 2019 All rights reserved.

Distributed SQL Databases
Deconstructed

Understanding Amazon Aurora, Google Spanner & the Spanner Derivatives

Karthik Ranganathan
Sid Choudhury

April 18, 2019

2© 2019 All rights reserved.

Introduction

Karthik Ranganathan

Co-Founder & CTO, YugaByte
Nutanix ♦ Facebook ♦ Microsoft

 IIT Madras, University of Texas-Austin

@karthikr

Sid Choudhury

VP Product, YugaByte
AppDynamics ♦ Salesforce ♦ Oracle

 IIT Kharagpur, University of Texas-Austin

@SidChoudhury

3© 2019 All rights reserved.

Types of Data Stores
This Talk’s Focus

OLAP OLTP

Write once, Read many
Few concurrent sessions
Long running, ad-hoc queries
Large table scans
Petabyte-scale data storage

Mixed reads & writes
Many concurrent sessions

Single-digit ms query latency
Point reads & short-range scans

Terabyte-scale data storage

4© 2019 All rights reserved.

Examples
Open Source

Proprietary

OLAP OLTP
NoSQL SQL SQLNoSQL

Google
BigTable

Amazon
Aurora

Google
Spanner

This Talk’s Focus

Google
BigQuery

5© 2019 All rights reserved.

Devs 😍 SQL

1. Query Flexibility 💪
– Model data once, change queries as business changes
– Balance modeling richness with performance needs

2. Rich Ecosystem 🔌
– Data modeling & query examples
– Developer IDEs & data visualization tools
– Easy to reuse & build integrations

3. Universal Standard for Data Access �
– Learn once, use forever

6© 2019 All rights reserved.

Devs 😡 SQL

1. Large Dataset? 📈
– No horizontal write scalability
– Use manually sharded SQL or non-transactional NoSQL

2. Infrastructure Failures? 🚨
– No native failover & repair
– Use complex replication schemes

3. Multi-Region/Geo-Distributed App? 🌏
– Multi-master deployment is the only option
– Data loss w/ Last Writer Wins (LWW) conflict resolution

7© 2019 All rights reserved.

Distributed SQL = Keep 😍 & Remove 😡
1. SQL Features

– ACID, JOINs, foreign keys, serializable isolation

2. Horizontal Write Scalability
– Scale write throughput by adding/removing nodes

3. Fault Tolerance With High Availability
– Native failover & repair

4. Globally Consistent Writes
– Lower end user latency and tolerate region failures

5. Low Read Latency
– Strongly consistent (aka correct) reads

8© 2019 All rights reserved.

Distributed SQL Architectures - Aurora vs Spanner

Amazon Aurora Google Spanner

“A highly available MySQL and PostgreSQL-compatible
relational database service”

Available on AWS since 2015

“The first horizontally scalable, strongly consistent,
relational database service”

Available on Google Cloud since 2017

Shared Storage Shared Nothing

9© 2019 All rights reserved.

#1 SQL Features

10© 2019 All rights reserved.

Depth of SQL Support

✓ MySQL and PostgreSQL-compatible Subset of MySQL/PostgreSQL features

Amazon Aurora Google Spanner

11© 2019 All rights reserved.

Aurora vs Spanner

Feature Amazon Aurora Google Spanner

SQL Features ✓

Horizontal Write Scalability ✓

Fault Tolerance with HA ✓

Globally Consistent Writes ✓

Low Read Latency

12© 2019 All rights reserved.

#2 Horizontal Write Scalability

13© 2019 All rights reserved.

Amazon Aurora
Single Node SQL on Multi-Zone Distributed Storage

SQL APP

INSERT ROW

❌ Add Primary Instances for Write Scaling

✓ Add Read Replicas for Read Scaling

14© 2019 All rights reserved.

Google Spanner
Multi-Node SQL on Multi-Region Distributed Storage

SQL APP

INSERT ROW3

✓ Add Primary Instances for Write Scaling

✓ Add Read Replicas for Read Scaling

INSERT ROW1

15© 2019 All rights reserved.

Aurora vs Spanner

Feature Amazon Aurora Google Spanner

SQL Features ✓

Horizontal Write Scalability ❌ ✓

Fault Tolerance with HA

Globally Consistent Writes

Low Read Latency

16© 2019 All rights reserved.

#3 Fault Tolerance with HA

17© 2019 All rights reserved.

Amazon Aurora
Native Failover & Repair Through Primary Auto Election

SQL APP

✓ HA When Primary Instance
Fails

✓ HA When Read Replica Fails

INSERT ROW

18© 2019 All rights reserved.

Google Spanner
Native Failover & Repair Through Shard Leader Auto Election

SQL APP

INSERT ROW1

✓ HA When Any Primary Node
Fails

✓ HA When Read Replica Fails

INSERT ROW3

19© 2019 All rights reserved.

Aurora vs Spanner

Feature Amazon Aurora Google Spanner

SQL Features ✓

Horizontal Write Scalability ❌ ✓

Fault Tolerance with HA ✓ ✓

Globally Consistent Writes

Low Read Latency

20© 2019 All rights reserved.

#4 Globally Consistent Writes

21© 2019 All rights reserved.

Amazon Aurora
Multi-Master Last Writer Wins Conflict Resolution Leads to Inconsistencies

SQL APP

SET BALANCE = BALANCE - 10

SQL APP

SET BALANCE = BALANCE - 100

Asynchronous
Replication

Region 1 Region 2

22© 2019 All rights reserved.

Google Spanner
Purpose-Built for Globally Consistent Writes

SQL APP

SET BALANCE =
BALANCE - 10

SQL APP

SET BALANCE =
BALANCE - 100

23© 2019 All rights reserved.

Aurora vs Spanner

Feature Amazon Aurora Google Spanner

SQL Features ✓

Horizontal Write Scalability ❌ ✓

Fault Tolerance with HA ✓ ✓

Globally Consistent Writes ❌ ✓

Low Read Latency

24© 2019 All rights reserved.

#5 Low Read Latency

25© 2019 All rights reserved.

Amazon Aurora
Strongly Consistent Reads Served By Primary Instance

SQL APP

READ ROW

26© 2019 All rights reserved.

Google Spanner
Strongly Consistent Reads Served By Shard Leaders w/o Read Quorum

SQL APP

READ ROW1

27© 2019 All rights reserved.

Aurora vs Spanner

Feature Amazon Aurora Google Spanner

SQL Features ✓

Horizontal Write Scalability ❌ ✓

Fault Tolerance with HA ✓ ✓

Globally Consistent Writes ❌ ✓

Low Read Latency ✓ ✓

28© 2019 All rights reserved.

Battle of Architectures - Spanner Beats Aurora

No Performance & Availability Bottlenecks
Scale to Large Clusters while Remaining Highly Available

Built for Geo-Distributed Apps
Future Proofs Data Tier at Global Businesses

Complex to Engineer
Needs Clock Skew Tracking Across Instances

29© 2019 All rights reserved.

Analyzing Open Source
Spanner Derivatives

30© 2019 All rights reserved.

Spanner Brought to Life in Open Source

31© 2019 All rights reserved.

Design Principles

• CP in CAP Theorem
• Consistent
• Partition Tolerant
• HA on failures

(new leader elected in seconds)

• ACID Transactions
• Single-row linearizability
• Multi-row ACID

• Serializable
• Snapshot

• High Performance
• All layers in C++ to ensure high perf
• Run on large memory machines
• Optimized for SSDs

• Run Anywhere
• No external dependencies
• No atomic clocks
• Bare metal, VM and Kubernetes

32© 2019 All rights reserved.

Functional Architecture

DOCDB
Spanner-Inspired Distributed Document Store

CLOUD NEUTRAL
No Specialized Hardware Needed

YSQL
PostgreSQL-Compatible Distributed SQL API

tablet 1’

tablet 1’

33© 2019 All rights reserved.

Distributed SQL = Keep 😍 & Remove 😡

1. SQL Features

2. Replication Protocol

3. Clock Skew Tracking

4. Transactions Manager

34© 2019 All rights reserved.

Spanner vs. its Open Source Derivatives
Feature Google Spanner YugaByte DB CockroachDB TiDB

Cost Expensive Free Free Free

SQL API Compatibility

Replication Protocol

Clock Skew Tracking

Transaction Manager

Tunable Read Latency

Official Jepsen Tests

35© 2019 All rights reserved.

SQL API Compatibility

36© 2019 All rights reserved.

PostgreSQL Transformed into Distributed SQL

37© 2019 All rights reserved.

Depth of SQL Support

• Current
• Data Types
• Built-in Functions
• Expressions
• JSON Column Type

• Secondary Indexes

• JOINs
• Transactions

• Views

• Future
• Relational Integrity (Foreign Keys)

• Stored Procedures

• Triggers

• Foreign Data Wrappers

• And more ...

38© 2019 All rights reserved.

Spanner vs. its Open Source Derivatives
Feature Google Spanner YugaByte DB CockroachDB TiDB

Cost Expensive Free Free Free

SQL API Compatibility Proprietary PostgreSQL PostgreSQL MySQL

Replication Protocol

Clock Skew Tracking

Transaction Manager

Tunable Read Latency

Official Jepsen Tests

39© 2019 All rights reserved.

Replication Protocol

40© 2019 All rights reserved.

Every Table is Automatically Sharded

tablet 1’

… … …
… … …

… … …

… … …

… … …

SHARDING = AUTOMATIC PARTITIONING OF TABLES

41© 2019 All rights reserved.

Replication Done at Shard Level

tablet 1’

Tablet Peer 1 on Node X

Tablet #1

Tablet Peer 2 on Node Y

Tablet Peer 3 on Node Z

42© 2019 All rights reserved.

Replication uses a Consensus algorithm

tablet 1’

Raft Leader

Uses Raft Algorithm

First elect Tablet Leader

43© 2019 All rights reserved.

Writes in Raft Consensus

tablet 1’

Raft Leader

Writes processed by leader:

Send writes to all peers
Wait for majority to ack

Write

44© 2019 All rights reserved.

Reads in Raft Consensus

tablet 1’

Raft Leader

Reads handled by leader

Uses Leader Leases for performance

Read

45© 2019 All rights reserved.

Spanner vs. its Open Source Derivatives
Feature Google Spanner YugaByte DB CockroachDB TiDB

Cost Expensive Free Free Free

SQL API Compatibility Proprietary PostgreSQL PostgreSQL MySQL

Replication Protocol Paxos Raft Raft Raft

Clock Skew Tracking

Transaction Manager

Tunable Read Latency

Official Jepsen Tests

46© 2019 All rights reserved.

Transactions and Clock Skew
Tracking

47© 2019 All rights reserved.

Multi-Shard Transactions

tablet 1’

k1 and k2 may belong to different shards

BEGIN TXN
 UPDATE k1
 UPDATE k2
COMMIT

Belong to different Raft groups on completely different nodes

48© 2019 All rights reserved.

What do Distributed Transactions need?

tablet 1’

Updates should get written at the same physical time

Raft Leader Raft Leader

BEGIN TXN
 UPDATE k1
 UPDATE k2
COMMIT

But how will nodes agree on time?

49© 2019 All rights reserved.

Use a Physical Clock

tablet 1’

You would need an Atomic Clock or two lying around

Atomic Clocks are highly available,
globally synchronized clocks with tight error bounds

Most of my physical clocks are never synchronized

Jeez! I’m fresh out of those.

50© 2019 All rights reserved.

Hybrid Logical Clock or HLC

tablet 1’

Combine coarsely-synchronized physical clocks with Lamport
Clocks to track causal relationships

(physical component, logical component)

synchronized using NTP a monotonic counter

Nodes update HLC on each Raft exchange for things like
heartbeats, leader election and data replication

51© 2019 All rights reserved.

Spanner vs. its Open Source Derivatives
Feature Google Spanner YugaByte DB CockroachDB TiDB

Cost Expensive Free Free Free

SQL API Compatibility Proprietary PostgreSQL PostgreSQL MySQL

Replication Protocol Paxos Raft Raft Raft

Clock Skew Tracking TrueTime Atomic
Clock

Hybrid Logical Clock +
Max Clock Skew

Hybrid Logical Clock
+ Max Clock Skew

Single Timestamp Gen
⇒ No Tracking Needed

Transaction Manager At Every Node At Every Node At Every Node Special Node for
Timestamp Generation

Tunable Read Latency

Official Jepsen Tests

52© 2019 All rights reserved.

Miscellaneous

53© 2019 All rights reserved.

Spanner vs. its Open Source Derivatives
Feature Google Spanner YugaByte DB CockroachDB TiDB

Cost Expensive Free Free Free

SQL API Compatibility Proprietary PostgreSQL PostgreSQL MySQL

Replication Protocol Paxos Raft Raft Raft

Clock Skew Tracking TrueTime Atomic
Clock

Hybrid Logical Clock +
Max Clock Skew

Hybrid Logical Clock
+ Max Clock Skew

Single Timestamp Gen
⇒ No Tracking Needed

Transaction Manager At Every Node At Every Node At Every Node Special Node for
Timestamp Generation

Tunable Read Latency ✓ ✓ ❌ ❌

Official Jepsen Tests Unknown ✓ ✓ ❌

54© 2019 All rights reserved.

Read more at
blog.yugabyte.com

blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-storage-layer
Storage Layer

blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-query-layer
Query Layer

https://blog.yugabyte.com/
https://docs.yugabyte.com/quick-start/
https://blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-query-layer/

55© 2019 All rights reserved.

Questions?
Try it at docs.yugabyte.com/quick-start

Check us out on GitHub
https://github.com/YugaByte/yugabyte-db

https://docs.yugabyte.com/quick-start/
https://github.com/YugaByte/yugabyte-db

