Kai Brusch / April 18th, 2019 / Data Council SF

Delphi: a hybrid approach to forecasting a global marketplace

Machine Learning is very good at interpolation

Purely optimizing the error function with an arbitrary number degree of freedom will always be able to perfectly fit

But pure Machine Learning struggles with extrapolation

Predictions on out of training samples are a notoriously hard problem

A hybrid between statistical and causal extrapolation

A strong theoretical framework allows to reliably forecast a global marketplace

Intro	Statistical Forecasting	Metric Graph	Delphi
What is our approach to forecasting and how do	How do we estimate the seasonality of supply and domand?	How do we define the underlying theoretical	How does Delphi realize this hybrid approach?

Intro	Statistical Forecasting	Metric Graph	Delphi
What is our approach to forecasting and how do	How do we estimate the seasonality of supply and domand?	How do we define the underlying theoretical	How does Delphi realize this hybrid approach?

Regression + extensions are the answer to interpretability

Our hybrid approach dictates the model selections to interpretable models

- Interpretable models > black box
 - Main assumption for connection to metric graph
 - Only way to derive business value is interpretability
- Generalized Linear Model (GLM) is the statistical foundation
- Expected: seasonality + events
 - GLM + seasonality = Generalized Additive Model (GAM)
- Unexpected events
 - GLM + random effects = Generalized Linear Mixed Models (GLMM)

Seasonal estimation with Generalized Additive Models

GAM extend the GLM framework with seasonality estimation

- Models the expectation of link function as sum of unknown smoothing functions
- Represent smoothing functions as B-Splines (mgcv)
- Example: Estimate bookings with a nights booked model

Every booking happens from a date

For several future nights on date_x

(20.3;25.3;1) (20.3;26.3;1) (20.3;27.3;1)

Add the delta between date and date_x

Those future dates already have some bookings

model_gam = bam(

value

~ 0

+ weekday

- + early_growth + last_12_months
- + last_24_months + last_36_months
- + last_48_months + last_60_months
- + event_index:event
- + weekday:event
- + s(share_of_year, k=length(knotsYear), bs="cc")
- + s(delta, k=length(knots_delta), by = weekday)
- + s(share_of_year_x, k=length(knotsYear), bs="cc")
- + s(share_of_year_x, k=length(knotsYear), by=weekday_offset, bs='cc')
- + weekday_x
- + event_index_x:event_x
- + event_x:weekday_offset
- + growth_x:weekday_offset
- + offset(-occupancy_index)
 - , family=quasipoisson()

)

	model_gam = bam(
	value
	~ 0
	+ weekday
nighta haakad:	+ early_growth + last_12_months
hights booked.	+ last_24_months + last_36_months
	+ last_48_months + last_60_months
date:	+ event_index:event
	+ weekday:event
	+ s(share_of_year, k=length(knotsYear), bs="cc")
delta:	+ s(delta, k=length(knots_delta), by = weekday)
	+ s(share_of_year_x, k=length(knotsYear), bs="cc")
	+ s(share_of_year_x, k=length(knotsYear), by=weekday_offset, bs='cc')
	+ weekday_x
date_x:	+ event_index_x:event_x
	+ event_x:weekday_offset
	+ growth_x:weekday_offset
Occupancy index:	+ offset(-occupancy_index)
	, family=quasipoisson()
)

Event detection with Generalized Linear Mixed Model

GLMM extend the GLM framework with random effects

$\mathbf{y} = \mathbf{X}eta + \mathbf{\epsilon}.$

- Observations come from groups which may have varying slopes and intercepts
- GLMM uses random and fixed effects hence the name mixed models (Ime4)
- Example: We have several observations of each date in the future

Event detection with Generalized Linear Mixed Model

GLMM extend the GLM framework with random effects

$$egin{aligned} &\eta \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}), \ &\mathbf{y} = \mathbf{X}eta + \mathbf{Z}\eta + \epsilon. \end{aligned}$$

- Observations come from groups which may have varying slopes and intercepts
- GLMM uses random and fixed effects hence the name mixed models (Ime4)
- Example: We have several observations of each date in the future

Leveraging pre-existing information to detect events

Successfully detected events we didn't expect

Human input: underlying causal framework

Causal relationships between metrics expressed as a graph

Delphi provides a singular interface for a hybrid approach

- Implements a singular interface for statistical models and causal graph
- Produces
 - An Airflow DAG for scalable estimation of statistical models (language independent)
 - Computational engine (Cython) to fuses estimates together
- And a GUI to allow investigation and access to computational engine
- Computational engine facilitates the scenario building:
 - Forward: If I pull now what outcome will I achieve
 - Backward: What levers do I need to pull to get to a goal

```
with metric('nights booked', date x='date night', shifted name='trips in progress before cancellations'):
                                           with facet(
                                                   [destination_dim, 'guest type l2'], ['date'],
                                           ):
                                               DataWarehouse()
                                           with facet(
                                                    [destination_dim, ('listing stage', 'rookie')], ['delta', 'date'],
                                           ):
                                               # If we use the default batch then the query returns too much data and times out. Therefore don't batch
with metric()
                                               # any dimension
                                               DataWarehouse(batch=[])
                                               Timeshift()
with facet()
                                               RookieNightsModel()
                                           with facet(
timeshiftOccupancyModel()
                                                   [destination_dim], ['delta', 'date'],
                                                   export='destination', export_shifted=True,
                                           ):
                                               # If we use the default batch then the query returns too much data and times out. Therefore don't batch
                                               # any dimension
                                               DataWarehouse(batch=[])
                                               TimeshiftOccupancyModel(
                                                   supply=('active listings', {'listing stage': Select('veteran')}),
                                               )
                                           with facet(
                                                   [origin_dim, 'guest type l2'], ['date'],
                                           ):
                                               DataWarehouse()
                                               Pullback(origin dim, destination dim, 'propensity nights contacted')
```


Summary ?

2018 YoY	2018 Exit Rate YoY	2019 YoY	2019 Exit Rate YoY

Markus Schmaus (Creator)

Jerry Chu, Didi Shi, Chris Lindsey (Engineering) Jackson Wang, Jiwoo Song, you? (FP&A)

[1] <u>https://multithreaded.stitchfix.com/assets/files/gam.pdf</u>

[2] Simon Wood. Generalized Additive Models : an introduction with R . CRC Press/Taylor & Francis Group, Boca Raton, 2017

[3] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis Texts in Statistical Science Series. Chapman & Hall/CRC, Boca Raton, FL, second edition, 2004