
Programming by Example: Challenges and Opportunities
Anish Doshi

2

What this talk will cover

➔ What programming by example (PBE) is
➔ Algorithms for solving the PBE problem
➔ Integrating it into Trifacta, a production data application
➔ How we enable PBE to become a user data-driven feature

3

What Trifacta Is

➔ Data Preparation Platform -
Focus on Data Cleaning for
analytics/ML

➔ Data scientists can spend 80% of
their time cleaning, validating, and
preparing their data

4

What Trifacta Is

➔ Interactive, "Excel Like" page for seeing, visualizing, and transforming data

5

➔ Dates, Phone Numbers, Addresses, Currencies, Floats, Emails, URLs
➔ User often wants to standardize a column to a single format
➔ Existing solution is in regex transformations / limited pattern standardization

Data cleaning involves...Stuff with Strings

6

Cleaning messy data: Standardization

7 (taken from stackoverflow)

8

What if you could just tell it what you want it too look like?

In PBE, rather than specifying the program directly, the
user specifies input/output examples, and the machine

figures out the program the user would like to craft

Building a PBE Algorithm

10

How it works

➔ General Idea: Given a set of input and output examples,
◆ synthesize a set of programs that could represent that state

11

How it works

➔ General Idea: Given a set of input and output examples,
◆ synthesize a set of programs that could represent that state
◆ then rank them to pick the best one

12

Synthesis

➔ Domain specific languages (the language programs are written in, e.g. SQL)
are usually too big to synthesize over
◆ Large numbers of functions
◆ Nesting
◆ Multi-step programs
◆ Numeric + String parameters

➔ Most PBE systems therefore restrict the DSL to something smaller, more task
oriented
◆ String Formatting DSL
◆ Supports operations like Substring(), Concat(), Upper/Lowercasing

FlashFill (Gulwani 2011)

➔ First real software application of PBE (shipped in Microsoft Excel 2013)

BlinkFill (Singh 2016)

➔ Idea: Programs should be semantically valid for the whole column, not just for
input examples provided

➔ Space of such programs is also dramatically smaller, leading to increased
performance (up to 40x as fast as FlashFill, according to authors)

Ranking: Heuristics

➔ Simplest: Occam's Razor (prefer simpler, shorter programs)

Ranking

➔ More sophisticated:
➔ Prefer certain functions (e.g. Propercase over UPPER + lower)
➔ Prefer substring boundaries that end at delimiters
➔ Use metadata about the column (e.g., use date formatting

functions in a date column)
➔ Can we improve these heuristics by looking at user data?

Ranking with ML

mixture of hand tuned heuristics (feature extractor) and ml (weight
models are trained on data)

Ranking with ML: Challenges in Production

➔ Training Data: simply look at hand crafted transformations!
➔ I.E. - save data before a transformation, data afterwards as a set of

input examples, save the transformation itself as the output program
➔ Operations that people are doing on your product are a great source

of training data
➔ Personalization potentially possible through transfer learning

Ranking with ML: Challenges in Production

➔ How do you train models on user data while respecting data privacy?
➔ Ideal is online trained models, but those may be hard to deploy
➔ Another strategy: Mask sensitive fields in analytics pipeline

➔ Fields like SSN, credit card numbers, email addresses should
be "masked" before saving

original: 123-45-6789 -> 123 45 6789
masked: 999-99-9999 -> 999 99 9999

➔ Model still has access to the informational content of the
pattern transformation

Neural Programming by Example

➔ Idea - Train a neural network directly to output a program given some
encoding of input/output examples

➔ "Output a program" can mean a bunch of things:
➔ Selecting a program from a preset list (a classification problem)

➔ Hard to predict on such a large space - maybe prefilter to a
threshold amount using heuristics, and then predict

➔ Write out a program token by token (e.g. with an RNN)
➔ Output a vector in some embedding space, and then find the closest valid

program that satisfies the validity constraint
➔ Program Synthesis ≠ Program Induction

RobustFill (Devlin, Uesato et al. 2017)

RobustFill (Devlin, Uesato et al. 2017)

RobustFill (Devlin, Uesato et al. 2017)

➔ How do you make sure the generated program actually works?
➔ Uses a modified beam search when outputting program tokens to make

sure the program result is as consistent with the examples as possible.
➔ Relies on nature of the DSL (String concatenation based DSL similar to

FlashFill/BlinkFill)
➔ Pros

➔ Continuous space, so tolerant to noise in examples (e.g. typos)
➔ Could be trained on data directly, no need for custom heuristics

➔ Cons
➔ Potentially hard to interpret results
➔ Hard to verify determinism

Neural Programming by Example: Challenges in Production

➔ Deployment
➔ How do you make sure the prediction step happens in a scalable way?
➔ Where do you store the neural network's weights, which can be quite

large?
➔ Testing

➔ How do you make guarantees on an inherently probabilistic operation?
➔ Can you make guarantees about the number of examples it takes to

output a correct program?
➔ Usability

➔ How would users provide feedback to the operation of the network?

Building a User Interface for PBE

Started with a prototype

Interactivity and Previewing are important

Same basic idea applied in our main application...

...but that raised a lot more questions

Can we allow users to interact,
filter, sort their data from a
toolbar?

If we know where the user should
be entering examples, can we
prompt them to do that somehow?

...but that raised a lot more questions

Should users be allowed to pick
between the top k ranked
programs?

Should they be able to edit the
generated program directly, in
addition to providing examples?

...but that raised a lot more questions

How do we handle failure states?

How does the user get a guarantee
about what will happen to the rest
of their data?

Key Takeaways

➔ Programming by Example is a methodology for users to interact with data in
new way

➔ Tradeoffs between ML and heuristics, in expressibility and determinism
➔ Building it requires full stack, cross-disciplinary thought

Questions + Thanks!

www.trifacta.com

adoshi@trifacta.com

https://www.trifacta.com/

