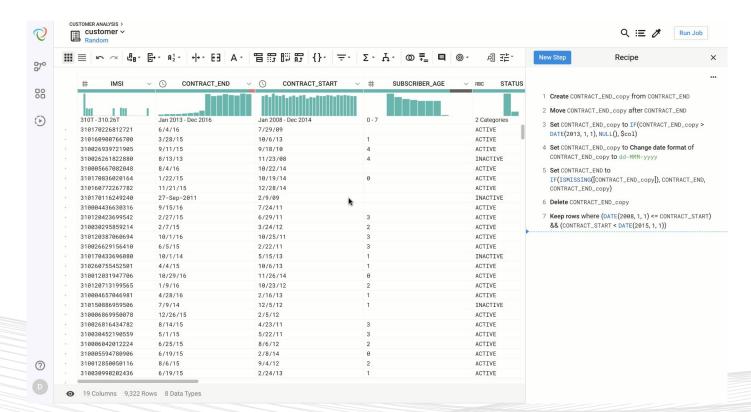

#### What this talk will cover

- → What programming by example (PBE) is
- → Algorithms for solving the PBE problem
- → Integrating it into Trifacta, a production data application
- → How we enable PBE to become a user data-driven feature



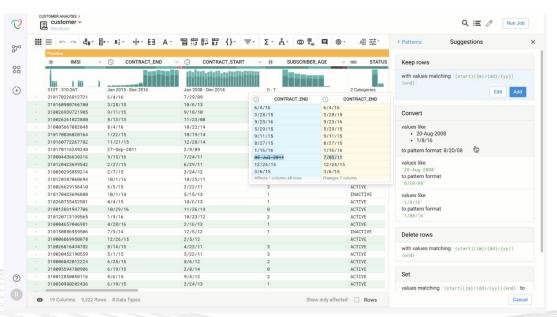
#### What Trifacta Is


- Data Preparation Platform -Focus on Data Cleaning for analytics/ML
- Data scientists can spend 80% of their time cleaning, validating, and preparing their data





#### What Trifacta Is


Interactive, "Excel Like" page for seeing, visualizing, and transforming data





# Data cleaning involves...Stuff with Strings

- Dates, Phone Numbers, Addresses, Currencies, Floats, Emails, URLs
- → User often wants to *standardize* a column to a single format
- Existing solution is in regex transformations / limited pattern standardization





# Cleaning messy data: Standardization

| ' ( | 94 | 9- | 7 | 2 | 7. | -6 | 4 | 9 | 0 | ' |
|-----|----|----|---|---|----|----|---|---|---|---|
|-----|----|----|---|---|----|----|---|---|---|---|

'282-854-3328'

'972-399-4667'

'4046985388'

6177590287

'8133663103'

'(315).732-3363'

'(315) 317-2248'



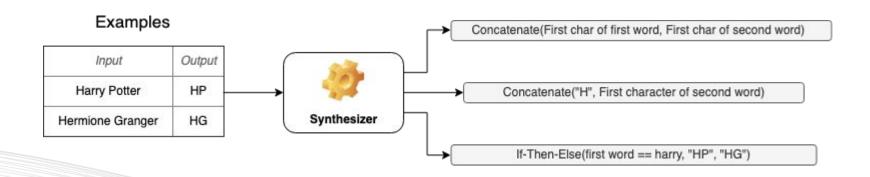


```
CREATE FUNCTION [dbo].[ufn FormatPhone]
    (@PhoneNumber VARCHAR(32))
RETURNS VARCHAR(32)
AS
  BEGIN
   DECLARE @Phone CHAR(32)
    SET @Phone = @PhoneNumber
    -- cleanse phone number string
    WHILE PATINDEX('%[^0-9]%',@PhoneNumber) > 0
      SET @PhoneNumber = REPLACE(@PhoneNumber,
               SUBSTRING(@PhoneNumber, PATINDEX('%[^0-9]%',@PhoneNumber),1),'')
    -- skip foreign phones
   IF (SUBSTRING(@PhoneNumber,1,1) = '1'
         OR SUBSTRING(@PhoneNumber,1,1) = '+'
         OR SUBSTRING(@PhoneNumber,1,1) = '0')
       AND LEN(@PhoneNumber) > 11
      RETURN @Phone
    -- build US standard phone number
    SET @Phone = @PhoneNumber
    SET @PhoneNumber = '(' + SUBSTRING(@PhoneNumber,1,3) + ') ' +
             SUBSTRING(@PhoneNumber, 4,3) + '-' + SUBSTRING(@PhoneNumber, 7,4)
   IF LEN(@Phone) -10 > 1
      SET @PhoneNumber = @PhoneNumber + ' X' + SUBSTRING(@Phone, 11, LEN(@Phone) - 10)
    RETURN @PhoneNumber
  END
```

# What if you could just tell it what you want it too look like?

'949-727-6490' +1 949 727 6490

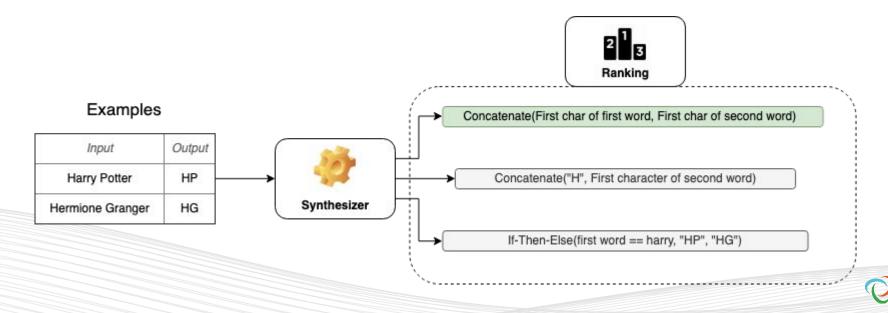
In PBE, rather than specifying the program directly, the user specifies input/output examples, and the machine figures out the program the user would like to craft




# Building a PBE Algorithm



#### How it works


- General Idea: Given a set of input and output examples,
  - synthesize a set of programs that could represent that state





#### How it works

- General Idea: Given a set of input and output examples,
  - synthesize a set of programs that could represent that state
  - then rank them to pick the best one



# **Synthesis**

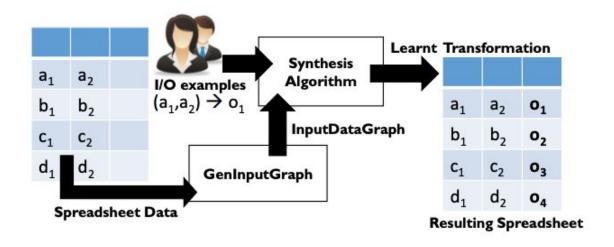
- Domain specific languages (the language programs are written in, e.g. SQL)
   are usually too big to synthesize over
  - Large numbers of functions
  - Nesting
  - Multi-step programs
  - Numeric + String parameters
- Most PBE systems therefore restrict the DSL to something smaller, more task oriented
  - String Formatting DSL
  - Supports operations like Substring(), Concat(), Upper/Lowercasing



## FlashFill (Gulwani 2011)

→ First real software application of PBE (shipped in Microsoft Excel 2013)

| Input $v_1$      | Output             |
|------------------|--------------------|
| (6/7)(4/5)(14/1) | 6/7 # 4/5 # 14/1 # |
| 49(28/11)(14/1)  | 28/11 # 14/1 #     |
| () (28/11)(14/1) | 28/11 # 14/1 #     |


#### String Program:

 $\overline{Loop(\lambda w : Con} catenate(SubStr(v_1, p_1, p_2), ConstStr("\#"))) \\ where p_1 \equiv Pos(LeftParenTok, TokenSeq(NumTok, SlashTok), w)) \\ and p_2 \equiv Pos(TokenSeq(SlashTok, NumTok), RightParenTok, w).$ 



# BlinkFill (Singh 2016)

- Idea: Programs should be semantically valid for the whole column, not just for input examples provided
- → Space of such programs is also dramatically smaller, leading to increased performance (up to 40x as fast as FlashFill, according to authors)



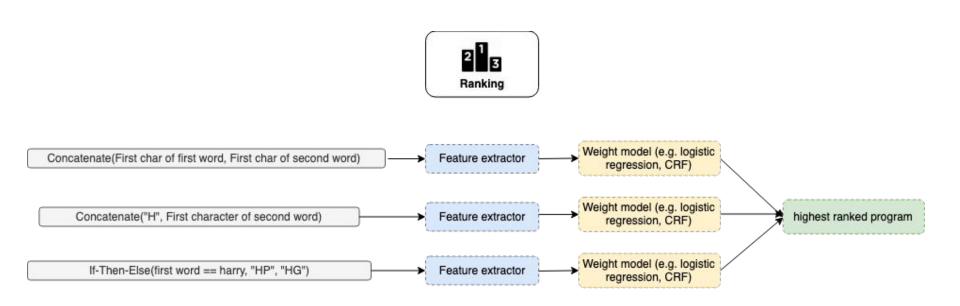


# Ranking: Heuristics

Simplest: Occam's Razor (prefer simpler, shorter programs)

```
MERGE([SUBSTRING(column1, 0, 1), SUBSTRING(column1,
1, 2)], '')
```

```
SUBSTRING(column1, 0, 2)
```




# Ranking

- → More sophisticated:
  - → Prefer certain functions (e.g. Propercase over UPPER + lower)
  - Prefer substring boundaries that end at delimiters
  - → Use *metadata* about the column (e.g., use date formatting functions in a date column)
- Can we improve these heuristics by looking at user data?



# Ranking with ML



mixture of hand tuned heuristics (feature extractor) and ml (weight models are trained on data)



# Ranking with ML: Challenges in Production

- → Training Data: simply look at hand crafted transformations!
- → I.E. save data before a transformation, data afterwards as a set of input examples, save the transformation itself as the output program
- Operations that people are doing on your product are a great source of training data
- Personalization potentially possible through transfer learning



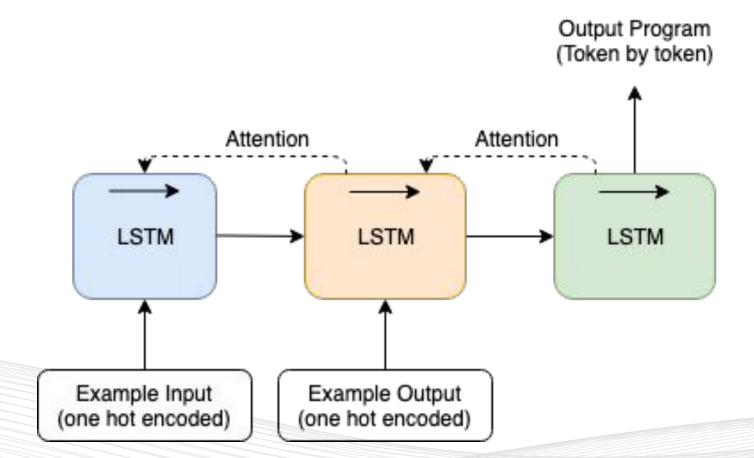
# Ranking with ML: Challenges in Production

- → How do you train models on user data while respecting data privacy?
  - → Ideal is online trained models, but those may be hard to deploy
  - → Another strategy: Mask sensitive fields in analytics pipeline
    - → Fields like SSN, credit card numbers, email addresses should be "masked" before saving

original: 123-45-6789 -> 123 45 6789

masked: 999-99-999 -> 999 99 9999

Model still has access to the informational content of the pattern transformation




# Neural Programming by Example

- Idea Train a neural network directly to output a program given some encoding of input/output examples
- → "Output a program" can mean a bunch of things:
  - → Selecting a program from a preset list (a classification problem)
    - → Hard to predict on such a large space maybe prefilter to a threshold amount using heuristics, and then predict
  - → Write out a program token by token (e.g. with an RNN)
  - Output a vector in some embedding space, and then find the closest valid program that satisfies the validity constraint
- → Program Synthesis ≠ Program Induction



# RobustFill (Devlin, Uesato et al. 2017)





# RobustFill (Devlin, Uesato et al. 2017)



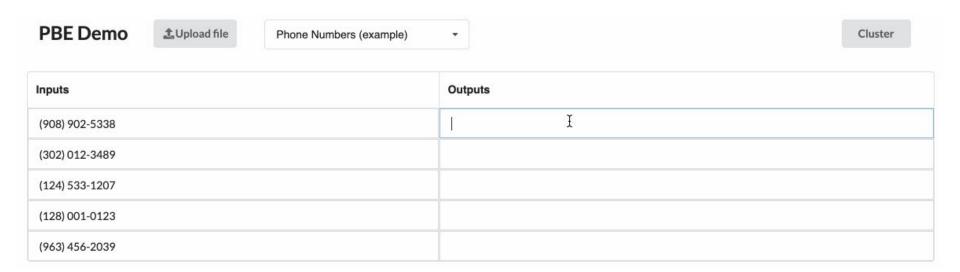


## RobustFill (Devlin, Uesato et al. 2017)

- → How do you make sure the generated program actually works?
  - → Uses a modified beam search when outputting program tokens to make sure the program result is as consistent with the examples as possible.
  - → Relies on nature of the DSL (String concatenation based DSL similar to FlashFill/BlinkFill)
- → Pros
  - Continuous space, so tolerant to noise in examples (e.g. typos)
  - → Could be trained on data directly, no need for custom heuristics
- → Cons
  - Potentially hard to interpret results
  - Hard to verify determinism



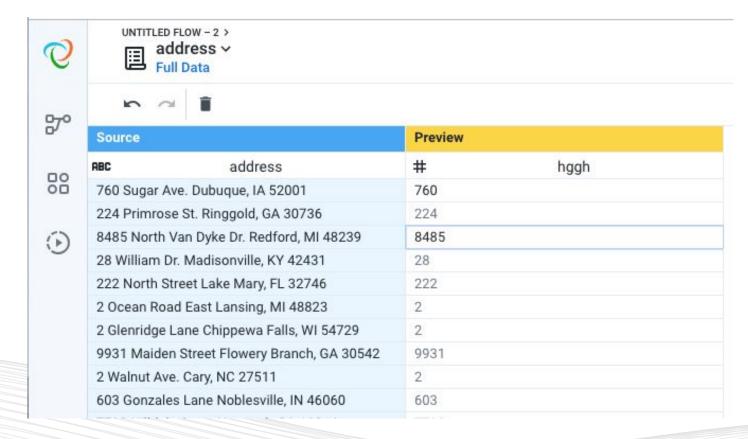
# Neural Programming by Example: Challenges in Production


- Deployment
  - → How do you make sure the prediction step happens in a scalable way?
  - → Where do you store the neural network's weights, which can be quite large?
- → Testing
  - → How do you make guarantees on an inherently probabilistic operation?
  - Can you make guarantees about the number of examples it takes to output a correct program?
- → Usability
  - → How would users provide feedback to the operation of the network?



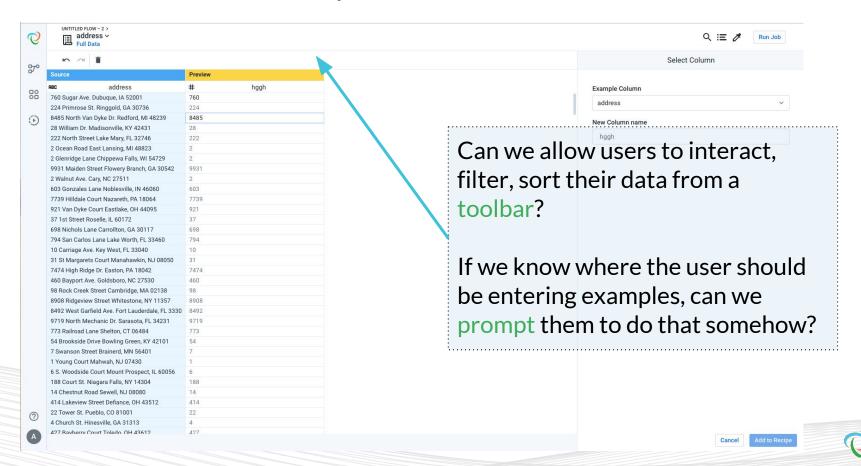
# Building a User Interface for PBE



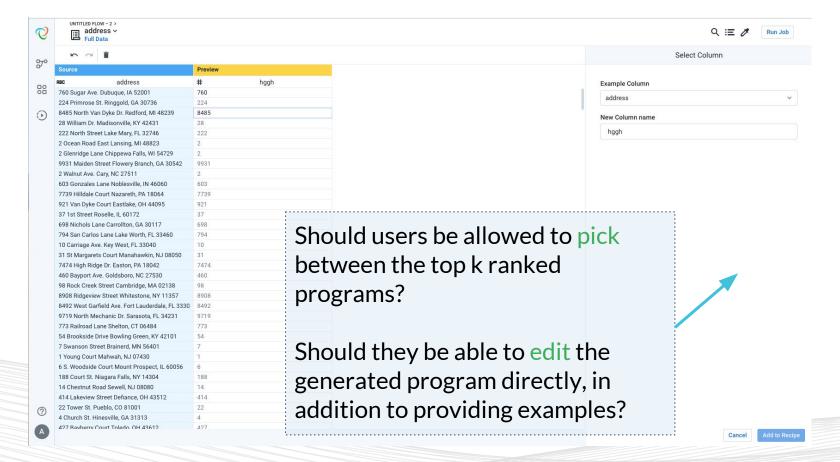

# Started with a prototype



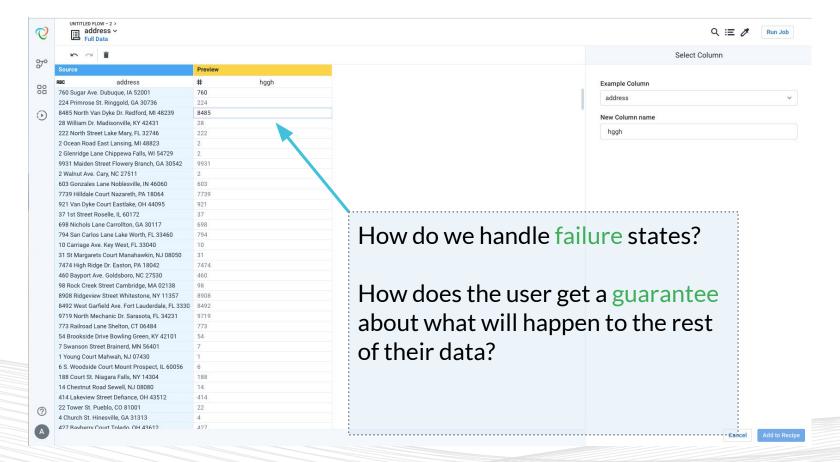
# **Interactivity** and **Previewing** are important




# Same basic idea applied in our main application...







### ...but that raised a lot more questions



# ...but that raised a lot more questions



## ...but that raised a lot more questions





# Key Takeaways

- Programming by Example is a methodology for users to interact with data in new way
- Tradeoffs between ML and heuristics, in expressibility and determinism
- → Building it requires full stack, cross-disciplinary thought





Follow

Al is going to take over the world... and this is what Excel auto-populated today.





# Questions + Thanks!

www.trifacta.com

adoshi@trifacta.com

