
Building a Lean AI Startup
Lessons learned

or How to start an ML company in your garage

Data Council '19

Paul Cothenet
Co-founder & CTO

MadKudu

MadKudu is a Lead & Account Scoring platform that enables
B2B companies to build relevant customer journeys at scale

About MadKudu

● "Machine Learning for Sales and Marketing"

● Used by the sales and marketing team at InVision, Shopify,
Segment, Drift, IBM, Avalara, Freshworks...

● Our assumption: If you're lucky to have good enough Data
Scientists and Data Engineers, employ them on what makes
your product unique, not on your sales and marketing funnel

Lead scoring everywhere

● 2 (then 3) data scientist / product managers
● No funding for a year
● Working from an actual garage

Before that

What this talk is

● Why being lean is hard in data
● Practical lessons learned building an AI product
● Practical tools and techniques we used
● Focus on the product/engineering, with a side of go-to-market

Target audience:
● Early stage (or aspiring) entrepreneurs
● Data Scientists / Engineers looking at launching new products

Lean Startup vs. DS/ML/AI

Source: The Lean Startup (http://theleanstartup.com/principles)

The goal is still the same
(especially if you don't have a
lot of $$)

What's different with AI?

http://theleanstartup.com/principles

What do you need to prove?

You need to prove that:

1. Your problem is well-suited for AI
a. You can collect the right data
b. You can predict with "minimum accuracy"

2. There is a market for your models ("model market fit")

3. You're solving the problem correctly over time

The framework I wish I had seen

(source: Zetta Venture Partners https://venturebeat.com/2018/08/18/the-ai-first-startup-playbook/)

https://venturebeat.com/2018/08/18/the-ai-first-startup-playbook/

Step 1: Get data!

You need data:

1. To prove that the problem is solvable
(aka your model is predictive)

2. To get feedback (mock-ups won't get
you there).

But how do you get customers to initially
trust you with their data?

Step 1: Get data!

What worked for us:

● We spent most of your initial engineering effort making it as easy
as possible for customers to send us data.

● We partnered with existing data repositories

● We asked for slightly more data than we needed

● Find potential customers of the right size

Step 1: Get data!

Get data! - Smoke and mirrors

Make it stupidly easy for customers to send
you their data (and do the rest manually)

● Our first endpoint was a node.js API
dumping data into SQS with a small
aggregator to S3 (also in node.js)

● Our first Salesforce "integration" would
only save credentials to the database
(and we would use it manually behind the
scenes)

Get data! - Find the right friends

(If you can) find the right data partners:

● Focus on partners of the right size (that will let you integrate
without having to demonstrate your value first)

● Avoid: partners that ask you to demonstrate value upfront (in our
case, Marketo, Eloqua…)

● If no partnership possible, ask your customers for their API key

Get data! - Pack the leftovers

We asked for slightly more data than what we thought we needed at
the time:

● That let us iterate later (see obstacle 2)
● Not too much so it will prevent customers from giving you access
● Make sure to use your early engineering efforts to adequately

protect the data.

Step 2: Get predictive!

Get predictive! - The trap

If you're a data scientist, you will probably spend too much time
here

…

Even if you know it's a trap

Get predictive! - The trap

A couple dead-ends we got stuck in for too long
● Trying to predict churn
● Trying

Why?
● Not because we couldn't predict, but because it didn't matter
● We didn't have "Model-Market Fit"
● We didn't go fast enough to the "Capture Feedback Data" and

"Measure ROI"

Get predictive! - Minimum predictiveness

● Find the simplest model that seem to do better than the current
case scenario ("Minimum Algorithmic Performance)
○ (in our case: trees and regressions)

● Before increasing complexity of the models
○ Can you increase the size of the datasets
○ Can you supplement with other sources of data to increase

dimensionality

● Shut up every cell of your brain that tells you to worry about
scalability/modularity

Step 3: Get real!

Get real! - Simplify your stack

What is the mininum you can do so you can get feedback?

What worked for us:
● Exclusively SQL + CRON
● Full-refresh first, no incremental
● No real-time, no streaming

Figure this out real-time and incremental only when the need arises

Get real! - Simplify your stack

You probably do not need:
● Spark
● Kafka
● ...

Step 4: Get feedback!

Get feedback!

A mistake we made:
● "Now we're serving the algorithm, can we move on to the next

customer?"

Get feedback!

● Ask for customer's $$ early

● Start by presenting your results with a Powerpoint deck

● Serve your model where your customer is going to use it

● Can you embed in your customer's process?

Get feedback!

Listen to all the feedback:
● If the customer has doubts about the prediction (very frequent

in lead scoring), they won't use it. The math might say otherwise
but they won't use it.

Recommendation:
● Don't fear overriding your model with manual heuristic in order

to get to the next objection

Step 5: Get returns!

Honestly, that one is super hard. I can't say that we've found
generalizable recommendations yet.

Step 5: Get returns!

Step 6: Get back!

Get back - Iterate rapidly

Congratulations: it works for one customer, what do you next?

Get back! - Iterate rapidly

What didn't work:
● Create structure and abstractions too early

What did work:
● Erring on the side of the spaghetti

● Rule of three:
wait until you've done the same
thing for 3 clients before doing
any kind of abstraction

Bonus lesson: Team organization

At least one founder that has experience in AI/ML
● Very very hard to get the desired iteration speed if outsourced (or

even first hire)
For us:
● Two founders with background in ML
● One with experience in data pipelines and Data Engineering

If you have to make a tradeoff
● Founder has ML expertise (most interaction with customers)
● Hire the Data Engineer

Good luck!

PS: If your company is still making you work on lead
scoring, please come talk to me during Office Hours!

paul@madkudu.com
@paulcothenet

Appendix

References

Things I really wish I had read before getting started:
https://machinelearnings.co/why-ai-companies-cant-be-lean-startup
s-734a289792f5
https://machinelearnings.co/the-ai-first-saas-funding-napkin-2cb138
070ffc
http://mattturck.com/the-power-of-data-network-effects/
https://venturebeat.com/2018/08/18/the-ai-first-startup-playbook/
https://techcrunch.com/2018/03/27/data-is-not-the-new-oil/

https://machinelearnings.co/why-ai-companies-cant-be-lean-startups-734a289792f5
https://machinelearnings.co/why-ai-companies-cant-be-lean-startups-734a289792f5
https://machinelearnings.co/the-ai-first-saas-funding-napkin-2cb138070ffc
https://machinelearnings.co/the-ai-first-saas-funding-napkin-2cb138070ffc
http://mattturck.com/the-power-of-data-network-effects/
https://venturebeat.com/2018/08/18/the-ai-first-startup-playbook/
https://techcrunch.com/2018/03/27/data-is-not-the-new-oil/

