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MadKudu is a Lead & Account Scoring platform that enables 
B2B companies to build relevant customer journeys at scale



About MadKudu

● "Machine Learning for Sales and Marketing"

● Used by the sales and marketing team at InVision, Shopify, 
Segment, Drift, IBM, Avalara, Freshworks...

● Our assumption: If you're lucky to have good enough Data 
Scientists and Data Engineers, employ them on what makes 
your product unique, not on your sales and marketing funnel



Lead scoring everywhere



● 2 (then 3) data scientist / product managers
● No funding for a year
● Working from an actual garage 

Before that



What this talk is

● Why being lean is hard in data
● Practical lessons learned building an AI product
● Practical tools and techniques we used
● Focus on the product/engineering, with a side of go-to-market

Target audience:
● Early stage (or aspiring) entrepreneurs
● Data Scientists / Engineers looking at launching new products



Lean Startup vs. DS/ML/AI

Source: The Lean Startup (http://theleanstartup.com/principles)

The goal is still the same 
(especially if you don't have a 
lot of $$)

What's different with AI?

http://theleanstartup.com/principles


What do you need to prove?

You need to prove that:

1. Your problem is well-suited for AI
a. You can collect the right data
b. You can predict with "minimum accuracy"

2. There is a market for your models ("model market fit")

3. You're solving the problem correctly over time



The framework I wish I had seen

(source: Zetta Venture Partners https://venturebeat.com/2018/08/18/the-ai-first-startup-playbook/) 

https://venturebeat.com/2018/08/18/the-ai-first-startup-playbook/


Step 1: Get data!



You need data:

1. To prove that the problem is solvable 
(aka your model is predictive)

2. To get feedback (mock-ups won't get 
you there).

But how do you get customers to initially 
trust you with their data? 

Step 1: Get data!



What worked for us:

● We spent most of your initial engineering effort making it as easy 
as possible for customers to send us data.

● We partnered with existing data repositories

● We asked for slightly more data than we needed

● Find potential customers of the right size

Step 1: Get data!



Get data! - Smoke and mirrors 

Make it stupidly easy for customers to send 
you their data (and do the rest manually)

● Our first endpoint was a node.js API 
dumping data into SQS with a small 
aggregator to S3 (also in node.js)

● Our first Salesforce "integration" would 
only save credentials to the database 
(and we would use it manually behind the 
scenes)



Get data! - Find the right friends 

(If you can) find the right data partners:

● Focus on partners of the right size (that will let you integrate 
without having to demonstrate your value first)

● Avoid: partners that ask you to demonstrate value upfront (in our 
case, Marketo, Eloqua…)

● If no partnership possible, ask your customers for their API key



Get data! - Pack the leftovers 

We asked for slightly more data than what we thought we needed at 
the time:

● That let us iterate later (see obstacle 2)
● Not too much so it will prevent customers from giving you access
● Make sure to use your early engineering efforts to adequately 

protect the data.



Step 2: Get predictive!



Get predictive! - The trap

If you're a data scientist, you will probably spend too much time 
here

…

Even if you know it's a trap



Get predictive! - The trap

A couple dead-ends we got stuck in for too long
● Trying to predict churn
● Trying 

Why?
● Not because we couldn't predict, but because it didn't matter
● We didn't have "Model-Market Fit"
● We didn't go fast enough to the "Capture Feedback Data" and 

"Measure ROI"



Get predictive! - Minimum predictiveness

● Find the simplest model that seem to do better than the current 
case scenario ("Minimum Algorithmic Performance)
○ (in our case: trees and regressions)

● Before increasing complexity of the models
○ Can you increase the size of the datasets
○ Can you supplement with other sources of data to increase 

dimensionality

● Shut up every cell of your brain that tells you to worry about 
scalability/modularity



Step 3: Get real!



Get real! - Simplify your stack  

What is the mininum you can do so you can get feedback?

What worked for us:
● Exclusively SQL + CRON
● Full-refresh first, no incremental
● No real-time, no streaming

Figure this out real-time and incremental only when the need arises



Get real! - Simplify your stack  

You probably do not need:
● Spark
● Kafka
● ...



Step 4: Get feedback!



Get feedback!  

A mistake we made:
● "Now we're serving the algorithm, can we move on to the next 

customer?"



Get feedback!  

● Ask for customer's $$ early

● Start by presenting your results with a Powerpoint deck

● Serve your model where your customer is going to use it

● Can you embed in your customer's process?



Get feedback!

Listen to all the feedback:
● If the customer has doubts about the prediction (very frequent 

in lead scoring), they won't use it. The math might say otherwise 
but they won't use it.

Recommendation:
● Don't fear overriding your model with manual heuristic in order 

to get to the next objection



Step 5: Get returns!



Honestly, that one is super hard. I can't say that we've found 
generalizable recommendations yet. 

Step 5: Get returns!



Step 6: Get back!



Get back - Iterate rapidly

Congratulations: it works for one customer, what do you next? 



Get back! - Iterate rapidly

What didn't work:
● Create structure and abstractions too early

What did work:
● Erring on the side of the spaghetti

● Rule of three: 
wait until you've done the same 
thing for 3 clients before doing 
any kind of abstraction



Bonus lesson: Team organization

At least one founder that has experience in AI/ML
● Very very hard to get the desired iteration speed if outsourced (or 

even first hire)
For us:
● Two founders with background in ML
● One with experience in data pipelines and Data Engineering

If you have to make a tradeoff
● Founder has ML expertise (most interaction with customers)
● Hire the Data Engineer



Good luck!

PS: If your company is still making you work on lead 
scoring, please come talk to me during Office Hours!

paul@madkudu.com
@paulcothenet
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