Architecting a Low-Latency
Schemaless SQL Engine

lgor Canadi, Rockset

[ROCKSET]

About

Rockset Igor
e Search and analytics engine e Rockset
e Enables data-driven e Facebook
applications e RocksDB
e GraphQL

|ROCKSET|

Overview

e Hardware and people efficiency

e Designing systems for people efficiency
o Schemaless SQL
o Converged indexing
o Serverless architecture

|ROCKSET|

Hardware Efficiency

[ROCKSET]

. f
TigerGraph Announces Free Developer Edition O

World's Fastest & Most Advanced GPU Database
g t Graph Database
the World’s Fastes

Brytlyt combines the power of GPUs with patent pending IP and is built
on PostgreSQL.

EXASOL: BUILDING THE FASTEST

DATABASE IN THE.WORLD

|ROCKSET|

test database

SQL Server 2017: Fast, faster, and the fas
everywhere you need it
emSQL Launches CommumtytEg:;n
orld's Fustest pData
Now A ailable 1o All

IBM Delivers World's Fastest Database

ROCKSET

Hardware Efficiency

e Faster databases ~=less hardware
e How much hardware do | need?
e Important, but not the only thing that matters

ROCKSET

People Efficiency

[ROCKSET]

People Efficiency

e How many people do | need?
e How muchtimedo | need?

ROCKSET

People Efficiency - Configuration
“My query is slow”
“Do you have an index?”
“What’s your partition key?”

“What’s your buffer size?”
“You should hire a DBA”

ROCKSET

People Efficiency - Organizational Friction

e Pre-cloud era: Application developers blocked on
provisioning
e Data scientists blocked on data engineers

ROCKSET

People Efficiency - Pipelines

CHECK ITOUT—I MADE A
FULLY AUTOMATED DATA
PIPELINE THAT COLLECTS
AND PROCESSES ALL THE
INFORMATION WE NEED.

15 IT A GIANT HOUSE OF CARDS
BUICT FROM RANDOr SCRIPTS
THAT WILL ALL COMPLETELY

COLLAPSE THE MOMENT ANY
INPUT DOES ANYTHING WEIRD?

IT... MIGHT NOT BE.
T GUESS THAT'S SOMETH-

WHOOPS, JUST

COLLAPSED. HANG

ON, I CAN PATCH IT.
\

ROCKSET

Hardware vs. People Efficiency

e Hardware is frequently cheaper than people
e Increase hardware efficiency - spend less money
e Increase people efficiency - spark creativity

ROCKSET

Designing Systems for
People Efficiency

[ROCKSET]

Rockset

Search and analytics engine

“Shortest path from data to applications”
Connect to data sources or streams
Execute fast queries

|ROCKSET|

Schemaless SQL

[ROCKSET]

Choosing the Query Language

SQL is the obvious choice
Maximize usefulness
Existing knowledge
Ecosystem of tools

ROCKSET

Querying existing data sources

=

—
00 OLTP

o o)

Logs Sensors

SQL

Email/Docs

[=

U=

Web/Mobile Files

|ROCKSET|

Querying existing data sources

=

—
00 OLTP

w © o) sa
" = - i
o= £ ...but first, let me define a schema

Web/Mobile Files

|ROCKSET|

SQL Schema

e Dragon people efficiency
e Messy data
e ComplexETL jobs

ROCKSET

Schemaless SQL

“Smart schema”
Frictionless data onboarding
Data scientists no longer blocked on data engineers

o
o
o
e Performance overhead?

ROCKSET https://rockset.com/blog/using-smart-schema-to-accelerate-insights-from-nested-json/

Schemaless SQL - Storage

Schema Data
Strict schema name: String | age: Int John |35
Schemaless “name”: S “John” | “age”: | 35
Schemaless name: 0 age: 1 0: S “John” 1:135

(with field interning)

ROCKSET

Schemaless SQL - Query Execution

Rows

_ 1 110 |7
Strict schema Columns

N
(@)

1 11017 |14 |15

Schemaless Columns
SalSb|I3 [I5 |Se

Schemaless Il 1 |10 (7 |4 |5
(with type hoisting) M Sa Sb I3 15 Se

Columns

ROCKSET

Schemaless SQL

e Superior user experience
e Fieldinterning reduces storage overhead
e Type hoisting reduces query execution overhead

|ROCKSET|

Converged indexing

[ROCKSET]

Converged Indexing

e “Queryisslow because of the missing index”

ROCKSET

Converged Indexing

e “Queryisslow because of the missing index”

ROCKSET

Background on Indexing

e Columnar storage
e Searchindexing

ROCKSET

Columnar Storage

e Store each column separately
e Greatcompression
e Onlyfetch columns the query needs

VERTICA

ROCKSET

amazon
REDSHIFT

29

Columnar Storage

e Store each column separately
e Greatcompression “name”

|
e Only fetch columns the query needs 0 |lgor
1 |Dhruba

<doc 0> .

{ “interests”
“name”: “Igor”, 0.0 | databases
“interests”: [“databases”, “snowboarding”], 0.1 boardi
“last active”: 2019/3/15 | Showboarding

} 1.0 | cars

- | 1.1 databases
<doc 1>

{

“interests”:

}

“‘name”: “Dhruba”,

[“cars”,

“databases”],

“last_active”: 2019/3/22

“last_active”

0 |2019/3/15

1 12019/3/22

|ROCKSET|

30

Columnar Storage

Advantages

Cost effective

Narrow queries, wide tables
Scan queries

Analytical queries

ROCKSET

Disadvantages

High write latency

High minimum read latency
Not suitable for online
applications

31

Search Indexing

e Foreach value, store documents containing that value (posting list)
e Quickly retrieve a list of document IDs that match a predicate

‘W

— elasticsearch SOL

ROCKSET

32

Search Indexing

e Foreach value, store documents containing that value (posting list)
e Quickly retrieve a list of document IDs that match a predicate

<doc 0>
{

“‘name”: “Igor”,

“last active”: 2019/3/15
}

<doc 1>

{
“‘name”: “Dhruba”,
“interests”: [“cars”, “databases”],
“last_active”: 2019/3/22

}

“name”

Dhruba |1

“interests”: [“databases”, “snowboarding”],

Igor 0

“interests”

databases

0.0; 1.1

cars

1.0

snowboarding

0.1

“last_active”

2019/3/15

|ROCKSET|

2019/3/22

33

Search Indexing

Advantages

e High selectivity queries
e Low latency queries
e Suitable for online applications

ROCKSET

Disadvantages

e Slower analytical queries

34

Converged Indexing

e Columnar and search indexes in the same system
e Built on top of key-value store abstraction
e Each document maps to many key-value pairs

ROCKSET

35

Converged Indexing

e Columnar and search indexes in the same system
e Built on top of key-value store abstraction
e Each document maps to many key-value pairs

ROCKSET

<doc 0>
{

“‘name” :

}

<doc 1>
{

“‘name” :

}

ANY Igor"

“Dhruba”

Key Value
R.0.name Igor
R.1.name Dhruba
C.name.O Igor
C.name.1 Dhruba

S.name.Dhruba.1

S.name.lIgor.0

Row Store

Column Store

Search index

36

Converged Indexing - Queries

e Fastanalytical queries + fast search queries
e Optimizer picks between columnar store or search index

ROCKSET

37

Converged Indexing - Queries

e Fastanalytical queries + fast search queries
e Optimizer picks between columnar store or search index

SELECT keyword, count (*)
FROM search logs

GROUP BY keyword

ORDER BY count (*) DESC

SELECT *

FROM search logs

WHERE keyword = ‘datacouncil’
AND locale = ‘en’

Search index Columnar store

38

ROCKSET

Converged Indexing - Writes

e Onedocument write results in many
key-value store writes

e Use write-optimized key-value store -
RocksDB

ROCKSET

39

Converged Indexing - Writes

e Onedocument write results in many

key-value store writes
e Use write-optimized key-value store -
RocksDB

Memory Manager

Memory Buffer |
Storage
SST1 SST 2
@
D background
compaction SST3 SST4

|ROCKSET|

40

Converged Indexing

e Fast queries out of the box
e Real-timeindex writes

More efficient
e Database configuration
e Queries

ROCKSET

Less efficient

e Storage
e Writes

41

Serverless Architecture

[ROCKSET]

Serverless Architecture

e Rocksetis acloud service
e No needto manage hardware
e Seamless autoscale

ROCKSET

43

Storage in the Cloud

e Dataissharded across leaves

|ROCKSET|

Rockset SQL API

/\

[Aggregator j

Aggregator

)
N

RocksDB

Leaf
RocksDB

Distributed
Log

RocksDB

44

Storage in the Cloud Rockset SOLAPI
L T~ Distributed
e Dataissharded across leaves [j [) Log
Aggregator Aggregator
e RocksDB-Cloud keeps consistent J
copy in cloud object storage
Leaf Leaf Leaf
RocksDB-Cloud RocksDB-Cloud RocksDB-Cloud
RocksDB RocksDB RocksDB
SST files SST files SST files

Object Storage (AWS S3, GCS, Minio, ...)

|ROCKSET| 5

Adding new read replica Rockset SOL AP
/\ Distributed
\
(] Lo
Copy data to a new leaf FR— PR— g
(Leaf \ Leaf \ f Leaf \ f Leaf \
RocksDB-Cloud RocksDB-Cloud RocksDB-Cloud RocksDB-Cloud
RocksDB RocksDB RocksDB RocksDB

~ T _ 3= | b

T~
SST files SST files SST files

Object Storage (AWS S3, GCS, Minio, ...)

|ROCKSET| 46

Adding new read replica

e Copydatatoanew leaf
e Tail new updates from log

Leaf

RocksDB-Cloud

RocksDB

Rockset SQL API
[Aggregator j [Aggregator
J

Leaf

Leaf

RocksDB-Cloud

RocksDB-Cloud

RocksDB RocksDB
~T _§ =
SST files SST files

|ROCKSET|

Object Storage (AWS S3, GCS, Minio, ...)

Distributed
Log

Leaf

RocksDB-Cloud

RocksDB

iy

SST files

47

Adding new read replica

e Copydatatoanew leaf
e Tail new updates from log
e Able to serve more queries

Leaf

RocksDB-Cloud

RocksDB

Rockset SQL API

/\

Aggregator Aggregator

Leaf

Leaf

RocksDB-Cloud

RocksDB-Cloud

RocksDB RocksDB
~T _§ =
SST files SST files

|ROCKSET|

Object Storage (AWS S3, GCS, Minio, ...)

\

J

Distributed
Log

Leaf

RocksDB-Cloud

RocksDB

iy

SST files

48

Conclusion

[ROCKSET]

Conclusion

e Schemaless SQL
e Converged indexing
e Serverless architecture

|ROCKSET|

No need to configure...

...schema
...indexes
...servers

50

Conclusion

e Rockset - “shortest path from data to applications”
e Making workflows easy catalyzes creativity

|ROCKSET|

51

Thank you

[ROCKSET]

