
Architecting a Low-Latency
Schemaless SQL Engine

Igor Canadi, Rockset

● Rockset
● Facebook
● RocksDB
● GraphQL

2

Rockset Igor

● Search and analytics engine
● Enables data-driven

applications

About

Overview

● Hardware and people efficiency
● Designing systems for people efficiency

○ Schemaless SQL
○ Converged indexing
○ Serverless architecture

Hardware Efficiency

Hardware Efficiency

● Faster databases ~= less hardware
● How much hardware do I need?
● Important, but not the only thing that matters

People Efficiency

People Efficiency

● How many people do I need?
● How much time do I need?

People Efficiency - Configuration

 “My query is slow”

“Do you have an index?”
“What’s your partition key?”
“What’s your buffer size?”
“You should hire a DBA”

People Efficiency - Organizational Friction

● Pre-cloud era: Application developers blocked on
provisioning

● Data scientists blocked on data engineers

People Efficiency - Pipelines

Hardware vs. People Efficiency

● Hardware is frequently cheaper than people
● Increase hardware efficiency - spend less money
● Increase people efficiency - spark creativity

Designing Systems for
People Efficiency

Rockset

● Search and analytics engine
● “Shortest path from data to applications”
● Connect to data sources or streams
● Execute fast queries

Schemaless SQL

Choosing the Query Language

● SQL is the obvious choice
● Maximize usefulness
● Existing knowledge
● Ecosystem of tools

Querying existing data sources

Web/Mobile

Email/Docs
Sensors

OLTP

Social Data Lake

Files

Logs

SQL

Querying existing data sources

Web/Mobile

Email/Docs
Sensors

OLTP

Social Data Lake

Files

Logs

SQL

...but first, let me define a schema

SQL Schema

● Drag on people efficiency
● Messy data
● Complex ETL jobs

Schemaless SQL

● “Smart schema”
● Frictionless data onboarding
● Data scientists no longer blocked on data engineers
● Performance overhead?

https://rockset.com/blog/using-smart-schema-to-accelerate-insights-from-nested-json/

Schemaless SQL - Storage

Strict schema

Schema Data

name: String age: Int John 35

Schemaless “name”: S “John” “age”: I 35

Schemaless
(with field interning)

0: S “John” 1: I 35name: 0 age: 1

Schemaless SQL - Query Execution

Strict schema
1 10 7 4 5

a b c d e

Schemaless

Schemaless
(with type hoisting)

Columns

Rows

I 1 I 10 I 7 I 4 I 5

S a S b I 3 I 5 S e
Columns

I 1 10 7 4 5

M S a S b I 3 I 5 S e
Columns

Schemaless SQL

● Superior user experience
● Field interning reduces storage overhead
● Type hoisting reduces query execution overhead

Converged indexing

Converged Indexing

● “Query is slow because of the missing index”

Converged Indexing

● “Query is slow because of the missing index”

Index all the fields!

Background on Indexing

● Columnar storage
● Search indexing

Columnar Storage
● Store each column separately
● Great compression
● Only fetch columns the query needs

29

Columnar Storage
● Store each column separately
● Great compression
● Only fetch columns the query needs

<doc 0>
{
 “name”: “Igor”,
 “interests”: [“databases”, “snowboarding”],
 “last_active”: 2019/3/15
}

<doc 1>
{
 “name”: “Dhruba”,
 “interests”: [“cars”, “databases”],
 “last_active”: 2019/3/22
}

“name”

“interests”

0 Igor

1 Dhruba

0.0 databases

0.1 snowboarding

1.0 cars

1.1 databases

“last_active”
0 2019/3/15

1 2019/3/22

30

● High write latency
● High minimum read latency
● Not suitable for online

applications

31

Advantages Disadvantages
● Cost effective
● Narrow queries, wide tables
● Scan queries
● Analytical queries

Columnar Storage

Search Indexing
● For each value, store documents containing that value (posting list)
● Quickly retrieve a list of document IDs that match a predicate

32

Search Indexing
● For each value, store documents containing that value (posting list)
● Quickly retrieve a list of document IDs that match a predicate

“name”

“interests”

Dhruba 1

Igor 0

databases 0.0; 1.1

cars 1.0

snowboarding 0.1

“last_active”
2019/3/15 0

2019/3/22 1

<doc 0>
{
 “name”: “Igor”,
 “interests”: [“databases”, “snowboarding”],
 “last_active”: 2019/3/15
}

<doc 1>
{
 “name”: “Dhruba”,
 “interests”: [“cars”, “databases”],
 “last_active”: 2019/3/22
}

33

● Slower analytical queries

34

Advantages Disadvantages
● High selectivity queries
● Low latency queries
● Suitable for online applications

Search Indexing

● Columnar and search indexes in the same system
● Built on top of key-value store abstraction
● Each document maps to many key-value pairs

Converged Indexing

35

● Columnar and search indexes in the same system
● Built on top of key-value store abstraction
● Each document maps to many key-value pairs

Converged Indexing

<doc 0>
{
 “name”: “Igor”
}

<doc 1>
{
 “name”: “Dhruba”
}

Key Value

R.0.name Igor Row Store

R.1.name Dhruba

C.name.0 Igor Column Store

C.name.1 Dhruba

S.name.Dhruba.1 Search index

S.name.Igor.0

36

● Fast analytical queries + fast search queries
● Optimizer picks between columnar store or search index

Converged Indexing - Queries

37

● Fast analytical queries + fast search queries
● Optimizer picks between columnar store or search index

Converged Indexing - Queries

SELECT *
FROM search_logs
WHERE keyword = ‘datacouncil’
AND locale = ‘en’

Search index

SELECT keyword, count(*)
FROM search_logs
GROUP BY keyword
ORDER BY count(*) DESC

Columnar store

38

● One document write results in many
key-value store writes

● Use write-optimized key-value store -
RocksDB

Converged Indexing - Writes

39

● One document write results in many
key-value store writes

● Use write-optimized key-value store -
RocksDB

Converged Indexing - Writes

40

Storage

Memory Manager
Memory Buffer

SST 1

SST 3 SST 4

new
keys

background
compaction

SST 2

● Storage
● Writes

41

More efficient Less efficient
● Database configuration
● Queries

Converged Indexing

● Fast queries out of the box
● Real-time index writes

Serverless Architecture

● Rockset is a cloud service
● No need to manage hardware
● Seamless autoscale

Serverless Architecture

43

Storage in the Cloud
● Data is sharded across leaves

Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB

Leaf

RocksDB

Leaf

RocksDB

Distributed
Log

44

Storage in the Cloud
● Data is sharded across leaves
● RocksDB-Cloud keeps consistent

copy in cloud object storage

Rockset SQL API

Aggregator Aggregator

 Object Storage (AWS S3, GCS, Minio, ...)

Leaf

RocksDB-Cloud

RocksDB

Leaf

RocksDB-Cloud

RocksDB

Leaf

RocksDB-Cloud

RocksDB

Distributed
Log

45

SST filesSST files SST files

Leaf

RocksDB-Cloud

 Object Storage (AWS S3, GCS, Minio, ...)

Leaf

RocksDB-Cloud

Adding new read replica Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB-Cloud

Leaf

RocksDB-Cloud

Distributed
Log

46

RocksDB RocksDB RocksDB RocksDB

SST filesSST files SST files

● Copy data to a new leaf

Leaf

RocksDB-Cloud

 Object Storage (AWS S3, GCS, Minio, ...)

Leaf

RocksDB-Cloud

Adding new read replica Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB-Cloud

Leaf

RocksDB-Cloud

Distributed
Log

47

RocksDB RocksDB RocksDB RocksDB

SST filesSST files SST files

● Copy data to a new leaf
● Tail new updates from log

Leaf

RocksDB-Cloud

 Object Storage (AWS S3, GCS, Minio, ...)

Leaf

● Copy data to a new leaf
● Tail new updates from log
● Able to serve more queries

RocksDB-Cloud

Adding new read replica Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB-Cloud

Leaf

RocksDB-Cloud

Distributed
Log

48

RocksDB RocksDB RocksDB RocksDB

SST filesSST files SST files

Conclusion

● Schemaless SQL
● Converged indexing
● Serverless architecture

Conclusion

50

...schema

...indexes

...servers

No need to configure...

● Rockset - “shortest path from data to applications”
● Making workflows easy catalyzes creativity

Conclusion

51

Thank you

