

Accelerating Machine Learning with Training Data Management

Alex Ratner

Stanford University

Training data is the key ingredient in ML

But it's created and managed in manual, ad hoc ways

KEY RESEARCH QUESTION

Can we add mathematical & systems structure to the way people build & manage training sets today?

Running Example: Chest X-Ray Triage

Motivation: Case prioritization for e.g. lowresource hospitals

[Dunnmon et. al., Radiology 2018; Dunnmon & Ratner et. al., 2019; Khandewala et. al., NeurIPS ML4H 2017]

Running Example: Chest X-Ray Triage

± 1 point due to model choice

Model dev is often radically easier today!

[Dunnmon et. al., Radiology 2018; Dunnmon & Ratner et. al., 2019; Khandewala et. al., NeurIPS ML4H 2017]

(All scores: ROC AUC)

Running Example: Chest X-Ray Triage

 \pm 9 points due to training set size

 \pm 8 points due to training set quality

± 1 point due to model choice

Training data is often the key differentiator

[Dunnmon et. al., Radiology 2018; Dunnmon & Ratner et. al., 2019; Khandewala et. al., NeurIPS ML4H 2017]

(All scores: ROC AUC)

Challenges of Training Data Management

- *Volume* is critical
 - But training data is largely hand-labeled: slow & expensive
- Quality is critical
 - But this is challenging to assess
- *Flexibility* is critical
 - But training sets are completely static

Our research: building systems that

1 Let users specify training sets in higher-level, programmatic ways

2) Clean and integrate this input

+ + + + +

3) Use as training data for ML models

A new way to specify ML models---in hours rather than months

This talk: Three systems that support and accelerate critical steps of training data creation & management

Problem: Hand-labeling is slow, expensive, & static

Idea: Enable users to label training data programmatically

KEY TECHNICAL IDEA:

View training set labeling as a *noisy programmatic process* that we can model

The Snorkel Pipeline

snorkel.stanford.edu

Users write *labeling functions* to heuristically label data

Snorkel *cleans and combines* the LF labels

The resulting training database used to train an ML model

Note: No hand-labeled training data!

Snorkel: Real-World Deployments

In many cases: From person-months of handlabeling to hours

to heuristically label data

combines the LF labels

training database used to train an ML model

(1) Writing Labeling Functions

	def LF_short_report(x): if len(X.words) < 15: return "NORMAL"	
	<pre>def LF_off_shelf_classifier(x): if off_shelf_classifier(x) == 1: return "NORMAL"</pre>	
	def LF_pneumo(x): if re.search(r'pneumo.*', X.text): return "ABNORMAL"	
	def LF_ontology(x): if DISEASES & X.words: return "ABNORMAL"	

LABELING FUNCTIONS

Labeling function:

 $\lambda: \mathcal{X} \mapsto \mathcal{Y} \cup \{0\}$ Data Labels Abstain

A simple abstraction for expressing domain heuristics or other noisy label sources

Simple Example: Pattern Matching

"Indication: Chest pain. Findings: Focal consolidation and pneumothorax."

def LF_pneumo(x):
 if re.search(r'pneumo.*', X.text):
 return "ABNORMAL"

Labeling functions (LFs) are simple UDFs for expressing domain expertise

Simple Example: Pattern Matching

LFs can also be noisy---we can estimate their accuracies to handle this (next)

A Simple Formalism for Weak Supervise Strategies

def LF pneumo(x):

- Pattern matching
- Distant supervision

Indication: Chest

pain. Findings: ocal consolidation

Functions of features

if re.search(r'pneumo.*', X.text): return "ABNORMAL"		
def LF_ontology(x): if DISEASES & X.words: return "ABNORMAL"		
def LF_short_report(x): if len(X.words) < 15: return "NORMAL"		

[e.g. Hearst 1992, Zhang 2017]

e.g.	Mintz	2009]
------	-------	-------

[e.g. Varma 2017]

And many others: crowdsourcing, other models, etc.

def LF circular mass(x):

return "ABNORMAL"

if c.radius > 1:

c = off_shelf_circle_finder(x)[0]

Result: Supervision as Code

	def LF_short_report(x): if len(X.words) < 15: return "NORMAL"
	def LF_off_shelf_classifier(x): if off_shelf_classifier(x) == 1: return "NORMAL"
	def LF_pneumo(x): if re.search(r'pneumo.*', X.text): return "ABNORMAL"
	def LF_ontology(x): if DISEASES & X.words: return "ABNORMAL"
	LABELING ELINCTIONS

But, very messy supervision...

Challenges of Supervision as Code

- Different unknown
 accuracies
- Different unknown
 correlations
- No ground truth

A new type of data cleaning and integration problem

labeling functions to heuristically label data

Snorkel cleans and combines the LF labels

The resulting training database used to train an ML model

How can we do this without ground-truth labels?

Simple generative model of the labeling process

- Represent the LF outputs as RVs
- Model with a single parameter
- Can be extended

Include pairwise dependencies

- Assume edges are known
- We (provably) estimate from unlabeled data [ICML'17, Arxiv'19]

This talk: How to learn model without observing *Y*?

Prior Work on Weak Supervision Modeling

Some prior work:

- 1. Crowdsourcing
 - 1. EM-based [e.g. Dawid & Skene, 1979]
 - 2. Spectral [e.g. Gosh, 2011; Anandkumar 2012]
- 2. Data fusion [e.g. Dong, 2015; Rekatsinas 2017]
- *3. Others (see snorkel.stanford.edu)*

Differences highlighted in this portion of the talk:

- 1. Complex dependencies between LFs
- 2. End-to-end theoretical guarantees

Key idea: Learn from the agreements & *disagreements* between the LFs

[Ratner et. al., AAAI '19] [Ratner et. al., NeurIPS '16]

 λ_4

 λ_3

This encodes the observed LF agreements / disagreements

Idea: Use graph-sparsity of Σ^{-1}

We know the zeros of Σ^{-1} from our model [Loh & Wainwright 2013, Ratner 2019]

This encodes our knowledge of the dependency structure

Observed

Unobserved

snorke

Let Ω be the set of 0 entry indices in Σ^{-1}

Observed

snorke

 $(\Sigma_{0}^{-1} + zz^{T})_{0} = 0$

This is similar to a matrix completion problem!

Result: Recovering the LF accuracies & correlations

Why is this nice?

- Simple to optimize: E.g. SGD
- Scalable: No dependence on n!
- Theoretical guarantees: We can leverage random matrix & perturbation tools to prove convergence

Let:

- *n* = number of *unlabeled* data points
- *d* = number of LF cliques

Recovery Results (Informal)

Given:

- n *unlabeled* data points
- A set of LFs that are *on average* better than 50% accurate
- A sufficiently sparse dependency structure (per deterministic test)

Recovery Results (Informal)

Given:

- n *unlabeled* data points
- A set of LFs that are *on average* better than 50% accurate
- A sufficiently sparse dependency structure (per deterministic test)

Then:

$$E[\|\hat{z} - z^*\|] = O\left(\frac{1}{\sqrt{n}}\right)$$

Parameter (LF accuracy & correlation strength) estimation error

Decreases with *unlabeled* data!

Result: Recovering the LF accuracies and correlations

This gives us a simple---and provably consistent---way to clean and integrate the LF outputs

Key question: How do we communicate the lineage (quality) of the training labels?

Ex: Importance of Label Lineage

Result: Average training label quality barely better than 60% accuracy

Solution: Modify Loss to Use *Probabilistic Labels*

- Standard ERM:
 - Minimize $\frac{1}{n} \sum_{i=1}^{n} l(x^{(i)}, y^{(i)})$
- We use a noise-aware loss:

• Minimize $\frac{1}{n} \sum_{i=1}^{n} E_{\tilde{y} \sim p_{z}(\cdot|\lambda^{(i)})}[l(x^{(i)}, \tilde{y})]$

A simple tweak to the loss function to communicate lineage / quality!

Recap: The Snorkel Pipeline

Users write *labeling functions* to heuristically label data

Snorkel cleans and combines the LF labels

The resulting training database used to train an ML model

End-to-End Recovery Results (Informal)

Result: Given conditions from before, and some loose assumptions about the end model, generalization error decreases at the same rate

$$E[||l_{\widehat{W}} - l_{W^*}||] = O\left(\frac{1}{\sqrt{n}}\right)$$

Expected test error of the end model

Decreases with unlabeled data!

Same asymptotic rate as with labeled data!

[Ratner et. al., AAAI 2019; Ratner et. al., NeurIPS 2016]

Question: Why train a final model at all?

Question: Why train a final model at all?

• (1) Generalization

- Often hard to write good, high-coverage LFs
- We can leverage commodity ML models and tools to do better! [VLDB 2018]
- (2) Cross-modal transfer
 - Write LFs over one feature set → train model over a different one

The resulting training database used to train an ML model

Highlight: Cross-Modal Transfer

Training data as a medium of transferring domain knowledge across modalities

def LF_ if "p r def LF_ if rej	pleural_effusion leural effusion eturn "ABNORMAL" normal_report(c len(NORMAL_TERMS ort_words)) > t	<pre>n(c): " in c.report.text: " , thresh=2):</pre>
def LF_ if rej	normal_report(c len(NORMAL_TERMS ort_words)) > t	, thresh=2):
-	eturn "NORMAL"	S.intersection(c. ;hresh:
India Media norma with conso pleu acute abnor	ation: Chest stinal conto limits. He n normal lin lidation, pr al effusion cardiopulmo mality.	t pain. Findings: ours are within eart size is nits. No focal neumothorax or . Impression: No onary

20 Labeling Functions

<pre>def LF_pneumothorax(c): if re.search(r'pneumo.*', c.report.text): return "ABNORMAL"</pre>
<pre>def LF_pleural_effusion(c): if "pleural effusion" in c.report.text: return "ABNORMAL"</pre>
<pre>def LF_normal_report(c, thresh=2): if len(NORMAL_TERMS.intersection(c. report.words)) > thresh: return "NORMAL"</pre>
Indication: Chest pain. Findings: Mediastinal contours are within normal limits. Heart size is within normal limits. No focal consolidation, pneumothorax or pleural effusion. Impression: No acute cardiopulmonary abnormality.

20 Labeling Functions

Applications: Diversity and Real-World Impact

Stanford MEDICINE

Medical Monitoring

(image, video, time series)

[Dunnmon & Ratner, 2019] [Khandwala, NeurIPS ML4H 2017] [Fries, 2018]

Knowledge Base Construction

(text, tables, PDFs, HTML)

[Ratner, VLDB 2018] [Wu, SIGMOD 2018] [Kuleshov, NeurIPS ML4H 2016]

Industry

(web, text, other)

[Bach, SIGMOD Industry 2019] [Mallinar, AAAI 2019] [Bringer, 2019]

In many cases: exceeds the efficacy of personmonths of labeled data in hours

Highlight: Scaling with unlabeled data

Takeaway: Add more *unlabeled* data---without changing the LFs---and get better end performance!

NIH Snorkel Workshop and User Study

Novice users: 45.5% better on average using Snorkel vs. hand-labeling

Snorkel: A System for Rapidly Creating Training Sets

Snorkel can enable a more *accessible*, *faster*, and *powerful* way of building ML applications

Our Research: Training Data Management Systems

Our Research: Training Data Management Systems

One Critical Tool: Data Augmentation

Ex: 13.4 pt. avg. accuracy gain from data augmentation across top ten CIFAR-100 models

Problem: Data augmentation is *critical*, but hard to hand-tune

Idea: Users provide transformations which we automatically tune and compose

Automatic Data Augmentation from User-**Specified Invariances**

Jsers write transformation functions (TFs)

TFs can express a diverse range of invariances

How do we tune & compose these?

Automating Tuning & Composing

Idea #1: Treat this as a sequence modeling problem

How do we generate diverse but realistic transformed images?

Automating Tuning & Composing

Idea #2: Use adversarial approach to learn to generate realistic images from unlabeled data

Automatic Data Augmentation from User-**Specified Invariances**

transformation functions (TFs)

model to tune & compose the TFs

64

end model

Empirical Results: Gains Across Domains

- Gains over heuristic data augmentation approaches:
 - 4 pts. in accuracy on CIFAR-10
 - 1.4 F1 score pts. on a text relation extraction problem
 - 3.8 pts. in accuracy on a clinical mammography classification task
- Our core ideas have since been adopted in industry:
 - Google's AutoAugment, yielding new SOTA on Imagenet

Our Research: Training Data Management Systems

Our Research: Training Data Management Systems

Most real-world settings: multiple related modeling tasks

How do we approach these multiple related modeling tasks?

Basic approach: T pipelines for T tasks

For ex: three separate Snorkel pipelines

Problem: We have to provide supervision (write LFs) for multiple tasks

Idea: Jointly model across multiple related tasks to do better with less

Basic approach: T pipelines for T tasks

Snorkel MeTaL: A System for Multi-Task Supervision

Use cross-task agreements / disagreements in an extended version of the matrix completion approach

Snorkel MeTaL: A System for Multi-Task Supervision

Empirical results: Strong gains over single-task approach (avg. 4 F1 points) and easier interface

Our Research: Training Data Management Systems

Research Agenda

Make real-world ML applications radically easier and faster to build

with data management systems that support critical steps outside of the model

Building up the code-as-supervision

From supervision as labels to *supervision as code*

78

Building up the code-as-supervision

Goal: Move up the stack- make ML radically easier to program

Models

Formalize and support other critical "preprocessing" steps of ML

Goal: Build data management systems that accelerate where ML developers actually spend their time

The Massively Multi-Task Ecosystem

Today:

As it becomes faster to build training sets there will be *tens to hundreds of interacting models*

New challenges:

- Incremental maintenance
- Handling complex data dependencies
- New formalisms

Goal: Support new model ecosystems at massive scale

Our Research: Training Data Management Systems

Key Idea: Add mathematical & systems structure to training data creation & management

Our Research: Training Data Management Systems

Thank you to: Chris Ré, Daniel Rubin, Kunle Olukotun, John Duchi, Chris De Sa, Sen Wu, Daniel Selsam, Henry Ehrenberg, Jason Fries, Bryan He, Braden Hancock, Theo Rekatsinas, Paroma Varma, Fred Sala, Jared Dunnmon, the Stanford Bio-X SIG Fellowship, and the many other contributors, users, and sponsors of Snorkel

