Tailor-S: Look What You Made Me Do!

Vadim Semenov
Software Engineer @ Datadog
vadim@datadoghqg.com

&

“r Web performance overview addGrapns +

SRole * v Senv * v Sz v & @

Q Search events to overlay. © @ show| 1h The Past Hour v] [« n »

Avg of system.load.1 over role:kafka-metrics-nov17 b...

Avg system load
]

£ Avgof system.cpu.idle over role:nginx by host & £ Avgof aws.ecs.memory_utilization.minimum over * b... S
7253 remi-test

2 42.18 operator
2417 reinvent2017demo
15 e 14.01 duo-network-gateway
g 3.26 sunny-burrito-test
10 265 ecs-demos
149 qa-agents
- ;
14 pierrem-test
o) : - ‘ 105 test2
09:15 09:30 09:45 10:00 055 haissam-fargate
nginx 4xx anomalies # ## Avgof dd.synth.test.bushour.at over * -] Avg of nginx.net.request_per_s over *
0.04
Forecast (1h) Forecast (1h)
30 300
0.03
A AP AAAAA,
20 200
0.02
£ 0.01
U T T T o T T . = 0 v
09:15 09:30 09:45 10:00 09:30 10:00 NOW 10:30 11:00 09:15 09:30 09:45 10:00 10:00
Avg of system.load.1 over * by role # #& Avgof zookeeper.latency.max over * by role # % Avgof aws.s3.get_requests over bucketname:apt.dat... & % ELB4xx & 5xx
1 4K
2 15 3K
20 15)
10 | | | |
1
10 1
s i | ' | il |] I
0.5
0— T r T — o i o a A_nan K
09:15 09:30 09:45 10:00 09:15 09:30 09:45 10:00 09:15 10:00 09:15 09:30 09:45 10:00
nginx 5xx anomalies + Ansible deployments Web Workers CPU Utilization by host 10 Slowest Pages # £ Avgof system.load.5 over role:cassandra-legacy by h... S
491K | series.batch_query is
300 1.63K | kimaweb.ui.old_manage_page:oldmanagepagecontroller.get_simple_list
097K login.oauth2
- 074K _login.change_subdomain 1
056K login.login
0.52K event_get.stream_data %
100 039K kima.web.ui.search:searchcontroller.search_groups o5
039K api/trace.services
g - A ; 027K api/trace.env_services
09:15 09:30 09:45 10:00

0 ' | '
0.26K login.switch_to_user 09:15 09:30 09:45 10:00

® mcnulty-query | series.batch_query X

POST /series/batch_query m

Flame Graph List View —
B]
X " 0 5ms 10 ms 15 ms 20 ms 25 ms 30 ms 35 ms 40 ms 45 ms 50 ms 55 ms 60 ms 65 ms
Service ¥ % Exec Time v | . L L 1 L L ! 1 L 1 L 1 I

@ metric-query 44.2%] pylonsirequest
@ menulty-query 26.2% B . dogweb.base.before controller.series.batch_query l
@ replicadb A dogweb.base.be.. I datalayer.metrics_api.metric_query
replica-i 5 I

e B — | [swingquey 000]

vng o s somgqweyran]
@ mindy 4.47% I - . _ -
0 ts_model 4.13% [] ll fsoit] o

= : m raw_query.fetch_aggr_st... I raw_guery.cac... |
|
[Jawen] |

Log Explorer m 4h Sep24,7:26 am - Sep 24, 11:27 am v «»» ac

= B »

08:00 08:15

1m @ 09:37:00 JEEH]

F"lj Saved Views Hide sidebar 383,392 results found Export &b &
Manage Facets 44of 44 DATE | HOST APPN.. MESSAGE
e Sep 24 11:27:56.928 beanserverprod I COMMAND connd command demo command: eval = $eval: sleep(163) , find: = group: admin keyUpdates:0 writeConflicts:0 numyields:o reslen:4s locks: Global: | acquireCount..
Sep 24 11:27:56.928 coffeehouseprod I COMMAND connd command demo command: eval = $eval: sleep(163) , find: = group: admin keyUpdates:o writeConflicts:d numyields:o reslen:4s locks:| Global: | acquireCount.
> Source Sep 24 11:27:56.924 beanserverprod 1 COMMAND connd dbeval slow, time: 163ms demo
A Sep 24 11:27:56.924 coffeehouseprod I COMMAND connd dbeval slow, time: 163ms demo
Sep 24 11:27:56.730 beanserverprod I COMMAND conn29 command demo command: eval = $eval: sleep(75) , find: = group: admin keyUpdates:o writeConflicts:0 numyields:o reslen:4s locks: Global: & acquireCount.
v service Sep 24 11:27:56.730 coffeehouseprod I COMMAND conn29 command demo command: eval = $eval: sleep(75) , find: = group: admin keyUpdates:0 writeConflicts:@ numyields:o reslen:4s locks: Global: = acquireCount.
menul Sep 24 11:27:56.619 beanserverprod I COMMAND conné command demo command: eval = $eval: sleep(1384) , find: group: admin keyUpdates:o writeConflicts:o numyields:e reslen:4s locks: Global: | acquireCoun..
Enarch Smendi 001 Sep 24 11:27:56.619 coffeehouseprod I COMMAND conn6 command demo command: eval = $eval: sleep(1384) , find: group: admin keyUpdates:o writeConflicts:0 numyields:o reslen:4s locks: Global: = acquireCoun.
Exclude "*menul** @ Sep 24 11:27:56.616 beanserverprod I COMMAND conné sleep 1384
@ menulty-query 362 Sep 24 11:27:56.616 beanserverprod I COMMAND conné dbeval slow, time: 1384ms demo
Sep 24 11:27:56.616 coffeehouseprod I COMMAND conné sleep 1384
{Status Sep 24 11:27:56.616 ~ coffeehouseprod I COMMAND conné dbeval slow, time: 1384ms demo
) sep 24 11:27:55.311 ip-172-31-21-74 rep.executing container operation.task processor.run container.containerstore run.node run.action.run step.running
A2) sep 24 11:27:55.311 1p-172-31-21-74 rep.executing container operation.task processor.run container.containerstore run.node run.action.download step.stream in complete
AT) sep 26 11:27:85.311 | 1p-172-31-21-74 rep.executing container operation.task processor.run container.containerstore run.node run.action.download step.stream in starting
S sep 20 11:27:55.311 | dp-172-31-21-74 rep.executing container operation.task processor.run container.containerstore run.node run.action.download step.fetch complete
Sep 24 11:27:55.274 AGENT UTC | INFO | transaction.go:136 in Process | Successfully posted payload to 'https://6-4-2-app.agent.datadoghq.com/api/vl/series?api_key=****+sxsssssrssssassnrsrsdoad
Sep 24 11:27:55.199 beanserverprod I COMMAND connd command demo command: eval = $eval: sleep(120) , find: = group: admin keyUpdates:0 writeConflicts:0 numyields:d reslen:4s locks:| Global: | acquireCount.
v AWS Sep 24 11:27:55.199 coffeehouseprod I COMMAND conn4 command demo command: eval = $eval: sleep(120) , find: = group: admin keyUpdates:@ writeConflicts:@ numyields:® reslen:45 locks: Global: | acquireCount..
% noks Sep 24 11:27:55.195 beanserverprod I COMMAND conna dbeval slow, time: 12ems demo
Sep 24 11:27:55.195 coffeehouseprod I COMMAND conn4 dbeval slow, time: 120ms demo
> Availability zone Sep 24 11:27:55.044 beanserverprod I COMMAND conn33 command demo command: eval ~$eval: sleep(1384) , find: = group: admin keyUpdates:® writeConflicts:@ numYields:@ reslen:45 locks: Global: = acquireCou..
5 Hame Sep 24 11:27:55.044 coffeehouseprod I COMMAND conn33 command demo command: eval = $eval: sleep(1384) , find: = group: admin keyUpdates:@ writeConflicts:@ numyields:@ reslen:4s locks:| Global: | acquireCou.
Sep 24 11:27:55.041 beanserverprod I COMMAND conn33 sleep 1384
> Log Group Sep 24 11:27:55.841 beanserverprod T COMMAND conn33 dbeval slow, time: 1384ms demo
Sep 24 11:27:55.041 coffeehouseprod I COMMAND conn33 sleep 1384
> Event Name
Sep 24 11:27:55.041 coffeehouseprod I COMMAND conn33 dbeval slow, time: 1384ms demo
> Log Group Sep 24 11:27:54.429 coffeehouseprod TRACE INFO trace_writer.go:98 flushed trace payload to the API, time:141.224318nms, size:1809 bytes
Sep 24 11:27:54.385 DDAZureDemoSQL 2018 @9 24 99:27:53.65 Logon Login succeeded for user datadog . Connection made using SQL Server authentication. CLIENT: 10.8.0.4
2. 52Buckee | Sep 24 11:27:54.324 1p-172-31-21-74 rep.executing container operation.task processor.run container.containerstore run.node run.action.download step.downloader.download.completed
> Efi | Sep 24 11:27:54.312 ip-172-31-21-74 rep.executing container operation.task processor.run container.containerstore run.node run.action.download step.downloader.download.copy to destination file.copy finished
| Sep 24 11:27:54.312 ip-172-31-21-74 rep.executing container operation.task processor.run container.containerstore run.node run.action.download step.downloader.download.fetch request
VEAMEOA | Sep 24 11:27:54.312 1p-172-31-21-74 rep.executing container operation.finished
> Function | Sep 24 11:27:54.312 ip-172-31-21-74 rep.executing container operation.task processor.task already started

[Triggered] [cortado] Cluster lost 3.275 NodeManagers

#account:prod #aws:elasticmapreduce:job-flow-id: =
Cluster lost at least 3.0 NodeManagers. This may lead to ExternalShuffleService issue

10

>= 3 nodes R

ve=s30m avg: 3.28 nodes)| [

08:30 08:45 0900 0915
uTC

avg(last_3@m):max:yarn.metrics.unhealthy nodes{*} by {mortar_cluster_id,host,mortar_user} + max:yarn.metrics.lost_nodes{*} by
{mortar_cluster_id,host,mortar_user} + max:yarn.metrics.decommissioned_nodes{*} by {mortar_cluster_id,host,mortar_user} >= 3

—h

Table of contents

CO®NOO~MOD

The original system and issues with it
Requirements for the new system
Decoupling of state and compute
State: Kafka-Connect

Compute: Spark

Testing

Sharding

Migrations

Results

In conclusion

1. The original system

Payloads

metric_id
timestamps
values
metadata

org_id / Map (org_id, metric_id) —» Kafka Topic/Partition

1. The original system
File Descriptor per Metric ID

Kafka Topic/Partition 0 File Descriptor per Metric ID

. Host/Consumer

Kafka Topic/Partition 1 File Descriptor per Metric ID
Kafka Topic/Partition 2 Encode & Compress

/

Write Custom Binary File Format to S3
Every X hours

Kafka Topic/Partition 3

1. The original system

ter * =

S by topic

K

$connect_¢

|2d The Past 2 Days

15min The Past 15 Minutes
1h The Past Hour

4h The Past 4 Hours

2d The Past 2 Days

1w The Past Week

1m The Past Month

- Select Range

10

1. The original system
File Descriptor per Metric ID

File Descriptor per Metric ID

Max 1M file Host/Consumer
deSCH pto rS per File Descriptor per Metric ID

h OSt Open File Count by Host (one file per org, metric, day) 4 B

1. The original system
Kafka Topic/Partition O >
Kafka Topic/Partition 1

Kafka Topic/Partition 2 —»

N\

Kafka Topic/Partition 3

Host/Consumer O

Host/Consumer 1

Must set when previous consumer
should stop and new start
consuming, prone to mistakes

12

1. The original system

Kafka Topic/Partition O

Kafka Topic/Partition 1
Kafka Topic/Partition 2

Kafka Topic/Partition 3

Host/Consumer

CPU usage (%)

100 _—

50

0

5:47 15:48

15:49

15:50

15:51

15:52

13

g
&

CPU usage (%)

100
50 [
0
13:10 13:11 13:12 13:13 13:14 13:15 13:16 13:17 1311

Kafka Topic/Partition O > Host/Consumer O

Kafka Topic/Partition 1

1. The original system

Underutilization

CPU usage (%) bRl -]

100

50

0
13:55 13:56 13:57 13:58 13:59 14:00 14:01 14:02

Kafka Topic/Partition 2 —/> Host/Consumer 1

Kafka Topic/Partition 3

14

1. The original system

Kafka Topic/Partition 0 —» Host/Consumer 0

Once you get to one partition per host and
1M of file descriptors, there's pretty much
no room to upscale

15

1. The original system

Kafka Topic/Partition 0 —» H er(

Have to start a new instance, reset offsets,
replay data for the past X hours

16

1. The original system

Payloads

metric_id
timestamps

values Difficult to know what
meteddtd orgs/metrics will be big, so this
model is prone to create
hot/big topics/partitions

org_id / Map (org_id, metric_id) —» Kafka Topic/Partition

17

1. The original system

Automatically redirects payloads so each kafka
Payloads topic/partition would be equally sized

metric_id
timestamps
values
metadata

org_id / Service (org_id, metric_id) i Kafka Topic/Partition O

Kafka Topic/Partition 1

We have to consume all
topics/partitions to get all data for a
metric id

18

2. Requirements to the new system

Conceptual:

1. Must work with the new partitioning schema

19

2. Requirements to the new system

Conceptual:

1. Must work with the new partitioning schema
2. Must be able to handle 10x growth (2x every year = 3
years)

20

2. Requirements to the new system

Conceptual:

1.
2.

Must work with the new partitioning schema
Must be able to handle 10x growth (2x every year = 3

years)
Keep the cost at the same level as the existing system

21

2. Requirements to the new system

Conceptual:

1.
2.

Must work with the new partitioning schema

Must be able to handle 10x growth (2x every year = 3
years)

Keep the cost at the same level as the existing system
Must be as fast as the existing system

22

2. Requirements to the new system

Operational:

1.

Easily scalable without much manual intervention

23

2. Requirements to the new system

Operational:

1. Easily scalable without much manual intervention
2. Minimize impact on kafka (reduce data retention time)

24

2. Requirements to the new system

Operational:

1. Easily scalable without much manual intervention
2. Minimize impact on kafka (reduce data retention time)

3. Be able to replay data easily

25

2. Requirements to the new system (RFC)

[tailor-s] Service for producing historical S files #1/4

NNV el buryat merged 8 commits into master from historical-s-resolution-files E& on Jul 13,2018
t&J Conversation 68 - Commits 8 & Checks 0 Files changed 1

Changes from all commits v File filter... v Jumpto..~ £}~ 0/ 1 files

v 237 mmEEE rfcs/historical-s-resolution-files/rfc.md E&

@@ -0,0 +1,237 @@

+

Service for producing historical S files

Authors: Vadim Semenov

Date: 2018-06-27

Status: draft

[Discussion] (https://github.com/DataDog/architecture/pull/o)

|

Overview

+ o+ + + + + + o+ o+
I

Next version of ‘rawls-extract-4h® that isn't tied to topics&partitions, can scale, and

26

3. Decoupling state and compute

We need to load all topics/partitions to compose a single
timeseries. Why not offload kafka to somewhere and then

load the whole dataset with Spark?

- Taylor Swift

photo by Jana Beamer
https://www.flickr.com/photos/94347223@N07/

27

https://www.flickr.com/photos/94347223@N07/

3. Decoupling state and compute

File Descriptor per Metric ID

HOS’[/Consumer File Descriptor per Metric ID

File Descriptor per Metric ID

v

Encode & Compress

/

Write Custom Binary File Format to S3

28

3. Decoupling state and compute

File Descriptor per Metric ID

HOS’[/Consumer File Descriptor per Metric ID

File Descriptor per Metric ID

v

Encode & Compress

/

Write Custom Binary File Format to S3

State

Compute

29

3. Decoupling state and compute

Kafka — Storage

Storage —> Encode & Compress

l

Write Custom Binary File Format to S3

State

Compute

30

3. Decoupling state and compute

Kafka — Kafka-Connect — S3 State

S3 —» Spark —» Encode & Compress

| Compute

Write Custom Binary File Format to S3

31

3. Decoupling state and compute

Kafka — Kafka-Connect — S3

S3 —» Spark —» Encode & Compress

l

Write Custom Binary File Format to S3

Tailor
S

32

4. State: Kafka-Connect

https://docs.confluent.io/current/connect/index.html

A really simple consumer, writes payloads as-is to S3 every 10 minutes or once it
hits 100k payloads. The goal is to deliver them to S3 as soon as possible with
minimum overhead

Files written
50K

40K
30K
20K
10K

0K , : a_ S— |
16:15 16:30 16:45 17:00

https://docs.confluent.io/current/connect/index.html

4. State: Kafka-Connect

Easy to operate:

1. "topics": "points-topic-0,points-topic-1" — simply add/remove topics and
kafka-connect will rebalance everything across workers automatically.

34

4. State: Kafka-Connect

Easy to operate:

1. "topics": "points-topic-0,points-topic-1" — simply add/remove topics and
kafka-connect will rebalance everything across workers automatically.

2. Add/remove workers and it rebalances itself

35

4. State: Kafka-Connect

Easy to operate:
1. "topics": "points-topic-0,points-topic-1" — simply add/remove topics and
kafka-connect will rebalance everything across workers automatically.

2. Add/remove workers and it rebalances itself

3. Stopping the system will push it back 10 minutes only — we can reduce
kafka retention

36

4. State: Kafka-Connect _
Keeping an eye on

System load normalized s # memory and GC

GC Runtime s =
500
400
300
200
wowwwwwmmwwww
0 T T T T T] T
3:30 14:00 14:30 15:00 15:30 16:00 16:30
Memory usage ¢ d ¢ ¥ Heap used/total s
40G
.process.rss{datacenter:us1.prod.dog, env:prod, service:rawls-extract-kafka-connect, host:i-0583a5cffbc7b3193}
232G 30G
30G
28G
26G
26 06

T T T T T T
T T T T T T i Y 5 | 5 ; g
330 14:00 14:30 15:00 15:30 16:00 6 00 3:30 14:00 14:30 15:00 15:30 16:00 16:30

4. State: Kafka-Connect

Files written VAR

- Every 10
- minutes we

write a lot of

ok |

T T T T T T
3:30 14:00 14:30 15:00 15:30 16:00 16:30 d ata

Bytes Written by topic and partition S

E]=- 'i—-—===:———I--"'=ll—-:=l-—-l—=—'-—-——-‘=—=—]-- =Em~== -—‘:]—E Dl —-]"-: | st e
3:30 14:00 14:30 15:00 15:30 16:00 16:30
38

4. State: Kafka-Connect

Had to optimize writes:

1. Randomized key prefixes, to avoid having hot underlying S3 partitions

39

4. State: Kafka-Connect

Had to optimize writes:
1. Randomized key prefixes, to avoid having hot underlying S3 partitions

2. Parallelize multipart uploads
(https://github.com/confluentinc/kafka-connect-storage-cloud/pull/231)

40

4. State: Kafka-Connect

Had to optimize writes:
1. Randomized key prefixes, to avoid having hot underlying S3 partitions

2. Parallelize multipart uploads
(https://github.com/confluentinc/kafka-connect-storage-cloud/pull/231)

3. Figure out optimal size of buffers to avoid OOMs (we run with s3.part.size=5MiB)

41

4. State: Kafka-Connect

Had to optimize writes:

1.
2.

Randomized key prefixes, to avoid having hot underlying S3 partitions

Parallelize multipart uploads
(https://github.com/confluentinc/kafka-connect-storage-cloud/pull/231)

Figure out optimal size of buffers to avoid OOMs (we run with s3.part.size=5MiB)
Still have lots of 503 Slow Down from S3, so we have exponential backoff for that and

monitor retries

S3 Errors count

2K

KE; U T U T U
8:00 Nov 10 06:00 12:00 18:00 Mon 11 06:00 12:00

4. State: Kafka-Connect
[data-eng] Tailor S points v Editwidgets +

Add Template Variables (7]

V - Number of points by topic
/ . 80K

Nicky:dexllézyﬁ ~ 1om Number of payloads

43

5. Compute: Spark

Lots of unknowns: reading 10T points is very difficult:

1. Lots of objects, so we need to minimize GC

44

5. Compute: Spark

Lost of unknowns: reading 10T points is very difficult:

1. Lots of objects, so we need to minimize GC
2. Figure out how to utilize internal APIs of Spark

45

5. Compute: Spark

Lost of unknowns: reading 10T points is very difficult:

1. Lots of objects, so we need to minimize GC
2. Figure out how to utilize internal APIs of Spark

3. Is it even possible with Spark??

46

5. Compute: Spark

Lost of unknowns: reading 10T points is very difficult:

Lots of objects, so we need to minimize GC
Figure out how to utilize internal APIs of Spark
Is it even possible with Spark??

Make it cost-efficient

A\

47

5. Compute: Spark (Minimizing GC)

Reusing objects:

1.

Allocate a 1MiB ByteBuffer once we open a file

48

5. Compute: Spark (Minimizing GC)

Reusing objects:

1. Allocate a 1MiB ByteBuffer once we open a file
2. Keep decoding payloads (ZSTD) into the allocated

memory

49

5. Compute: Spark (Minimizing GC)

Reusing objects:

1.
2.

Allocate a 1MiB ByteBuffer once we open a file
Keep decoding payloads (ZSTD) into the allocated
memory

Get data from the same byte buffer

50

5. Compute: Spark (FileFormat)

org.apache.spark.sql.execution.datasources.FileFormat

provide a reader of
org.apache.spark.sqgl.catalyst.InternalRow

then point InternalRow directly to regions of memory in the
allocated buffer

51

5. Compute Spark (FileFormat)

68 protected void processNext() throws java.io.IOException {
69 /* 028 */ while (scan_mutableStateArray_0[0].hasNext()) {
70 /[* 029 %/ InternalRow scan_row_0 = (InternalRow) scan_mutableStateArray_0[0].next();
71 /* 030 */ ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(1);
72 /% 031 */ do {
73 /* 032 %/ boolean scan_isNull_0 = scan_row_0.isNullAt(0);
74 /* 033 %/ int scan_value_0 = scan_isNull_0 ? -1 : (scan_row_0.getInt(0));
75 /* 034 */ boolean scan_isNull_3 = scan_row_0.isNullAt(3);
76 /* 035 */ int scan_value_3 = scan_isNull_3 ? -1 : ((JENRT R aut(3));
550 4 oae
551 // We keep reusing the same row which helps avoid GC
552 © private val singletonRow = new InternalRow {
553 @f override def numFields: Int = 10
554
g5 at rn AiranuniAda AAf ~cA+MGTTA+(3 e T+ e s+ -
594 @f override def getInt(ordinal: Int): Int = ordinal match
595 case ORG_ID = orgld
596 case TIMESTAMP = timestamp
482 def orgld: Orgld = _orgld

483 def metrchd Metrchd byteBuffer getLong(bodyOffset + currentP01ntOffset)

5. Compute Spark (FileFormat)

68

69

70

71

72

73

74

75

76
550
551
552
553 @]
554
o5 at
594 @f
595
596

o4

482
483

/*
/*
/*
/*
/*
/*
/[*
/[*

AN

O

028
029
030
031
032
033
034
035

noc

*/
*/
*/
*/
*/
*/
*/
*/

Ll

protected void processNext() throws java.io.IOException {
while (scan_mutableStateArray_0[0].hasNext()) {
InternalRow scan_row_0 = (InternalRow) scan_mutableStateArray_0[0].next();
((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(1);
do {
boolean scan_isNull_0 = scan_row_0.isNullAt(0);
int scan_value_0 = scan_isNull_0 ? -1 : (scan_row_0.getInt(0));
boolean scan_isNull_3 = scan_row_0.isNullAt(3);

int scan_value_3 = scan_isNull_3 ? -1 : (HeEiMReo/BeM-Cianti(3));

// We keep reusing the same row which helps avoid GC

private val singletonRow = new InternalRow {

Directly delivers primitives

override def numFields: Int = 10 to Spark's memory

Avia

vunida AAf ca*MuTTA+l 53 Thn+)e Tlns+ -

bypassing creating

override def getInt(ordinal: Int): Int = ordinal match .
case ORG_ID = orgld ObJeCtS Completely
case TIMESTAMP => timestamp

def orgld: Orgld = _orgId
def metrchd Metrchd byteBuffer getLong(bodyOffSet + currentP01nt0ffset)

53

5. Compute: Spark (FileFormat)

Class Objects Shallow Size Retained Size
[c] java.lang.Long 13,443,478 <0 322,643,472 33 ~ 322,643,472 33
[€] java.lang.Object]] 3,374,244 11 "/E 179,464,224 19 % ~ 181,541,544 19 7%
(€] byte[] 1,416,878 59 171,718,384 18% =~ 171,718,384 18
[C] java.lang.Double 3,361,823 11% 80,683,752 89 ~ 80,683,752 8%
org.apache.spark.sql.catalyst.expressions.UnsafeRow sun.misc.Launcher$AppC 1,387,309 55,492,360 =~ 55,492,360
(c] java.lang.Integer 3,362,624 119 53,801,984 69 ~53,801,984 69
[€] org.apache.spark.sql.catalyst.expressions.GenericinternalRow sun.misc.Launch 3,361,751 11 "/E 53,788,016 6 % ~ 53,788,016 6 °«;
Il Alaael 1N2 2687 n o£ 124 72Ca 27N 1 L ~ 1A 2O 227N 1«
Class Objects Shallow Size Retained Size
[€] com.datadog.spark.data.PointRow sun.misc.Launcher$AppClassLoader 3,361,771 Bfﬂ 215,153,344 36@ ~ 215,153,344 3@
(€] byte[] 1,784,715 198 201,485,672 33 ~ 201,485,672 33
[C] java.util.LinkedListSNode 1,758,087 19 % 42,194,088 7 ~ 42,226,968 7%
org.apache.spark.sql.catalyst.expressions.UnsafeRow sun.misc.Launcher$Ap| 1,757,691 70,307,640 ~ 70,307,640
[€] char] 100,325 1% 13,672,720 2% ~ 13,672,720 2%
[E] iava lana Strina]2 274 1% 1076 Q76 0% ~ R 781 A24 1%

54

5. Compute: Spark (FileFormat)

Summary

RDD Storage Disk Active Failed Complete Total Task Time Shuffle Shuffle
Blocks Memory Used Cores Tasks Tasks Tasks Tasks (GC Time) Input Read Write Blacklisted
Active(50) 0 0.0B/6.6TB 0.0B 1372 79665 79694 CxZWa NG4S 0.0B 0.0B 1.8TB 0
)]
Dead(14) O 0.0B/19TB 0.0B 392 0 20307 20664 POER PR 0.0B 0.0B 3646GB 0
Total(64) O 0.0B/85TB 0.0B 1764 P& 99972 100358 ELROLEGET#-4 0.0B 0.0B 22TB 0
h)
| =SV DN
Summary *
RDD Storage Disk Active Failed Complete Total Task Time Shuffle Shuffle
Blocks Memory Used Cores Tasks Tasks Tasks Tasks (GC Time) Input Read Write Blacklisted
Active(50) 50 2MB/6.6TB 0.0B 1372 _ 0 99934 100000 [EEERLICZN4)N 00B 0.0B 21TB 0
Dead(0) O 0.0B/0.0B 0.0B 0 0 0 0 0 0 ms (0 ms) 0.0B 0.0B 0.0B 0
Total(50) 50 2MB/66TB 0.0B 1372 _ 0 99934 100000 [N EA N 0.0B 00B 21TB 0

Evanidava

5. Compute: Spark (Files > 2GiB)

Can't read files bigger than 2GiB into memory because
arrays in java can't have more than 2231 - 8 elements. And
sometimes kafka-connect produces very big files

56

5. Compute: Spark (Files > 2GiB)

1. Copy a file locally

57

5. Compute: Spark (Files > 2GiB)

1. Copy a file locally
2. MMap it using com.indeed.util.mmap.MMapBuffer, i.e.
map the file into the virtual memory

58

5. Compute: Spark (Files > 2GiB)

1. Copy a file locally
2. MMap it using com.indeed.util.mmap.MMapBuffer

3. Allocate an empty ByteBuffer using java reflections

59

5. Compute: Spark (Files > 2GiB)

-

Copy a file locally

MMap it using com.indeed.util.mmap.MMapBuffer
Allocate an empty ByteBuffer using java reflections
Point ByteBuffer to a region of memory inside the
MMapBuffer

60

5. Compute: Spark (Files > 2GiB)

-

Copy a file locally

MMap it using com.indeed.util.mmap.MMapBuffer
Allocate an empty ByteBuffer using java reflections
Point ByteBuffer to a region of memory inside the
MMapBuffer

Give ByteBuffer to ZSTD decompress

61

5. Compute: Spark (Files > 2GiB)

Copy a file locally

MMap it using com.indeed.util.mmap.MMapBuffer
Allocate an empty ByteBuffer using java reflections
Point ByteBuffer to a region of memory inside the
MMapBuffer

Give ByteBuffer to ZSTD decompress

Everything thinks that it's a regular ByteBuffer but it's
actually a MMap'ed file

-

o o

62

5. Compute: Spark (Files > 2GiB)

H-j Viza

42
43
A
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

8]

* We create a "fake ByteBuffer" object and point it to the address that directMemory has

* so then ZstdUtil could work with a "fake ByteBuffer" so we avoid memory copying.

* Zstd uses a C library that reads data from a region of memory and outputs uncompressed

* into another region, so we can just point a ByteBuffer to a region of memory where we loaded
* compressed data

*%/

def createByteBufferLinkedToDirectMemory(

}

directMemory: DirectMemory,
offset: Long,
length: Int

: ByteBuffer = {

val address = classOf[Buffer].getDeclaredField(name = "address")
address.setAccessible(true)

val capacity = classOf[Buffer].getDeclaredField(name = "capacity")
capacity.setAccessible(true)

val bb = ByteBuffer.allocateDirect(capacity = 0).order(ByteOrder.nativeOrder)

// Let's point the ByteBuffer to the region that bigger DirectMemory has
address.setlLong(bb, directMemory.getAddress + offset)

capacity.setInt(bb, length)

// Need to reset the byte buffer position, so zstd uncompress would work correctly
bb.limit(length)

bb.position(newPosition = 0)

bb

63

5. Compute: Spark (Files > 2GiB)

Some files a very big, so we need to read them in parallel.

1. Set spark.sql.files.maxPartitionBytes=1GB

64

5. Compute: Spark (Files > 2GiB)

Some files a very big, so we need to read them in parallel.

1. Set spark.sql.files.maxPartitionBytes=1GB
2. Write length,payload,length,payload,length,payload

65

5. Compute: Spark (Files > 2GiB)

Some files a very big, so we need to read them in parallel.

1. Set spark.sql.files.maxPartitionBytes=1GB
2. Write length,payload,length,payload,length,payload
3. Each reader will have startByte/endByte

66

5. Compute: Spark (Files > 2GiB)

Some files a very big, so we need to read them in parallel.

1.

Set spark.sql.files.maxPartitionBytes=1GB

2. Write length,payload,length,payload,length,payload
3.
4

Each reader will have startByte/endByte

Keep skipping payloads until >= startByte

67

5. Compute: Spark (Files > 2GiB)

Size of files being processed simultaneously e o h & OB

Because of lots of
Nz | Al tricks we have to track

30G ‘—-“L"‘)Rl ‘
/ l !“
20G i host 007973cd705b83fb7 env. prod mortar_ cIuster _tags:raw
10G ' h{ 1
i A 1 Ll /b

40G

”1“ M\F ’\ ’}\l W” i\ allocation/deallocation

of memory in our

iy s ety Tl el =& 2% custom reader. It's
- | 'w‘ | | | very memory efficient,
S et doesn't use more than
: L\ 154}\!.‘5&)\ WHM&A 1! 1;#30)\M Mtk A A 4GiB per executor

68

5. Compute: Spark (Internal APIs)
DataSet.map(obj => ...)

1. must create objects

69

5. Compute: Spark (Internal APIs)
DataSet.map(obj => ...)

1. must create objects

2. copies primitives from Spark Memory (internal spark
representation)

70

5. Compute: Spark (Internal APIs)
DataSet.map(obj => ...)

1. must create objects

2. copies primitives from Spark Memory (internal spark
representation)

3. has schema

71

5. Compute: Spark (Internal APIs)

DataSet.map(obj => ...)
1. must create objects

2. copies primitives from Spark Memory (internal spark
representation)

3. has schema

4. type-safe

72

5. Compute: Spark (Internal APIs)

DataSet.queryExecution.toRdd(InternalRow =>)
1. doesn't create objects

73

5. Compute: Spark (Internal APIs)

DataSet.queryExecution.toRdd(InternalRow =>)
1. doesn't create objects
2. doesn't copy primitives

74

5. Compute: Spark (Internal APIs)

DataSet.queryExecution.toRdd(InternalRow =>)
1. doesn't create objects

2. doesn't copy primitives

3. has no schema

75

5. Compute: Spark (Internal APIs)

DataSet.queryExecution.toRdd(InternalRow =>)
1. doesn't create objects

2. doesn't copy primitives

3. has no schema
4

. hot type-safe, you need to know position of all fields,
easy to shoot yourself in the foot

76

5. Compute: Spark (Internal APIs)

DataSet.queryExecution.toRdd(InternalRow =>)

1.

o &~ DN

doesn't create objects

doesn't copy primitives

has no schema

not type-safe, you need to know position of all fields
InternalRow has direct access to Spark memory

77

5. Compute: Spark (Internal APIs)

val df = records

.groupBy(coll= "org_id", cols= "metric_id", "context_k
// sort_array works for “struct’s, it sorts all tuples
-agg(

sort_array(collect_list(struct(colName = "timestamp",
)
DataFrameUtil.explainPlanWithCodeGenAndCost(df)
// Get the internal version of the RDD. Avoids copies anc
// Allows to bypass creating scala objects like tuples ar
// And instead we have to get field values using field pc
val rdd = df.queryExecution. toRdd
.mapPartitions(_.flatMap { row =
val startTime = System.nanoTime()
val orgIld = row.getInt(ordinal= Q)
val metricId = row.getLong(ordinal = 1)

78

5. Compute: Spark (Memory)

spark.executor.memory = 150g Cveral e moey sage 7
spark.yarn.executor.memoryOverhead = 70g ¢

spark.memory.offHeap.enabled = true,
spark.memory.offHeap.size = 100g

150G

100G

50G

0G

T T T T
15:30 16:00 16:30 17:00

Heap used S B
200G

150G
100G

50G % /{r
y Aéw’?;) } @’:‘gﬁu&w&tm Qo A '\“‘W M@. .\l‘: ,,{)J
1530 1600 1530 1700

5. Compute: Spark (GC)

Here we only compare ratio of GC to task time,
screenshots were taken not at the same point
within the job

Executors
offheap=false (default setting), almost 50% is spent in GC
Summary
RDD Storage Disk Active Failed Complete Total Task Time (GC
Blocks Memory Used Cores Tasks Tasks Tasks Tasks Time) Inp
Active(99) 0 0.0B/19.8TB 0.0B 2744 m 0 12848 15690 57.1h (31.1 h) 0.0
Dead(0) O 0.0B/0.0B 0.0B 0 0 0 0 0 0 ms (0 ms) 0.0
Total(99) O 0.0B/19.8TB 0.0B 2744 pLIA 0 12848 15690 0.0
Executors
offheap=true, GC time drops down to 20%
Summary
RDD Storage Disk Active Failed Complete Total Task Time (GC
Blocks Memory Used Cores Tasks Tasks Tasks Tasks Time) Ing
Active(99) 0 0.0B/14.7TB 0.0B 2744 = 1000 99667 100670 471.8h (90.4 h) K]
Dead(2) O 0.0B/298GB 0.0B 56 0 329 386 4.0 h (9.4 min) 0.0
Total(101) 0 0.0B/15TB 0.0B 2800 |« 1057 99996 101056 475.8h (90.6 h) oK)

80

5. Compute: Spark (GC)

time spent in GC = 63.8/1016.3 =6.2%

Executors
Summary
RDD Storage Disk Active Failed Complete Total Task Time (GC Shuffle Shuffle
Blocks Memory Used Cores Tasks Tasks Tasks Tasks Time) Input Read Write Blacklisted
Active(99) 0 0.0B/225TB 0.0B 3136 0 0 66391 66391 963.4 h (60.4 h) 20TB 10.3TB 9.7TB 0
Dead(7) 0 0.0B/16TB 0.0B 224 0 0 2739 2739 52.8 h (3.5 h) 984 520.2 GB 430.9 GB 0
GB
Total(106) 0O 0.0B/241TB 0.0B 3360 0 0 69130 69130 1016.3h (63.8h) 21 TB 10.8TB 10.1TB 0

81

5. Compute: Spark (GC)

GC time vs CPU time dh
. overall, GC is now ~0.3%
. of overall cpu time v

. 1m3s 1s390ms 1m20s 3m17s (statsd_jvm_profiler.gc.G1_Old_Generation.runtime + statsd_jvm_profiler.gc.G1_Young_Generation.runtime) env:prod,mortar_cluster_tags:rawls-tailor
. 2h23m 1s598ms 1h37m 2h46m (statsd_jvm_profiler.gc.G1_Old_Generation.time + statsd_jvm_profiler.gc.G1_Young_Generation.time) env:prod,mortar_cluster_tags:rawls-tailor

47d 1m 25s 20d 48d spark.stage.executor_run_time env:prod,mortar_cluster_tags:rawls-tailor

6. Testing

1. Unit tests

84

6. Testing

1. Unit tests

ﬁ DataDog/

DATADOG

ops/tests/test_tailor_checker.py

97 now_timestamp = unixtimestamp(now)

98

99 all_shards = {"reputation", "1989"}

100

101 first_chunk_is_done = unixtimestamp(d("1989-12-13 16:00:00")) + 4 * 3600 - 1
103 not_done = unixtimestamp(d("1989-12-13 20:00:00")) + 1 *x 3600

104

105 chunk_shard_stats = {

106 d("1989-12-13 16:00:00"): {

107 "reputation": {"max_timestamp": first_chunk_is_done,

"number_of_points": 1, "duplicate_points": 1},
@ Python Showing the top two matches Last indexed on Aug 13
85

6. Testing

1. Unit tests
2. Integration tests

86

6. Testing

1. Unit tests
2. Integration ' m saeces

src/test/scala/com/datadog/spark/jobs

scala
166 RawlsIntervalRow(
167 1989,
168 1989,
169 345L,
170 345 x 17L,
171 Array(1507939400),
188 "100000\tshard1",
189 "1989\tshard1l"
190)
191)
192 .repartition(1)
193 .saveAsTextFile(rawlsShardsOrgMappingPath)

@ Scala Showing the top three matches Last indexed on Jul 10

6. Testing

1. Unit tests
2. Integration tests
3. Staging environment

88

6. Testing

1. Unit tests

2. Integration tests

3. Staging environment
4. Load-testing

89

6. Testing

Unit tests

Integration tests
Staging environment
Load-testing
Slowest parts

Al A

90

6. Testing

2R o

Unit tests

Integration tests

Staging environment
Load-testing

Slowest parts

Checking data correctness

91

6. Testing

NOoO O~

Unit tests

Integration tests

Staging environment
Load-testing

Slowest parts

Checking data correctness
Game days

92

6. Testing (Load testing)

Once we had a working prototype, we started doing load
testing to make sure that the new system is going to work for

the next 3 years.

1. Throw 10x data
2. See what is slow/what breaks, write it down

3. Estimate cost

93

6. Testing (Slowest parts)

Have good understanding of the slowest/most skewed parts
of the job, put timers around them and have historical data to
compare.

And we know limits of those parts and when to start
optimizing them.

94

6. Testing (Slowest parts)

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

of

E brivate val task = néw java.util.TimerTask {

def run(): Unit

client.gauge(
client.gauge(
client.count(

client.count(
client.count(

client.count(
client.count(

client.count(
client.count(

client.count(
client.count(

client.count(
client.count(

client.count(
client.count(

client.count(
client.count(

= {

aspect = "memory", RawlsKafkaConnectMemory.usage)

aspect = "size_of_files", RawlsKafkaConnectFileFormat.fileSize)

aspect = "corrupt_readings", RawlsKafkaConnectFileFormat.corruptErrors)

aspect = "readingFileMs", RawlsKafkaConnectTimers.getReadingFileMs)
aspect = "readingFileCounts", RawlsKafkaConnectTimers.getReadingFileCounts)

aspect = "readingFileInMemoryMs", RawlsKafkaConnectTimers.getReadingFileInMemoryMs)
aspect = "readingFileInMemoryCounts", RawlsKafkaConnectTimers.getReadingFileInMemoryCounts)

aspect = "readingFileMmapMs", RawlsKafkaConnectTimers.getReadingFileMmapMs)
aspect = "readingFileMmapCounts", RawlsKafkaConnectTimers.getReadingFileMmapCounts)

aspect = "totalDecodingMs", RawlsKafkaConnectTimers.getTotalDecodingMs)
aspect = "totalDecodingCounts", RawlsKafkaConnectTimers.getTotalDecodingCounts)

aspect = "zstdDecompressMs", RawlsKafkaConnectTimers.getZstdDecompressMs)
aspect = "zstdDecompressCounts”, RawlsKafkaConnectTimers.getZstdDecompressCounts)

aspect = "zstdNativeMs", RawlsKafkaConnectTimers.getZstdNativeMs)
aspect = "zstdNativeCounts", RawlsKafkaConnectTimers.getZstdNativeCounts)

aspect = "totalDataFrameTimeMs", RawlsKafkaConnectTimers.getTotalDataFrameTimeMs)
aspect = "totalDataFrameTimeCounts", RawlsKafkaConnectTimers.getTotalDataFrameTimeCounts)

95

6. Testing (Easter egg

19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
1911 /'Y
19/11/11
19/11/11
19/11/11
19/11 /A'Y
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11
19/11/11

e saa s

23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23230217
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
23:30:17
233017
23230217
23:30:17.
23:30:17

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:
RawlsKafkaConnectReporter:

Are

you ready for it?
Let the games begin

. stoys++t/ -,
./sddhddssoooooo//--~-
./osooshNmdyssyydhyy+oysso+-
-:+hddhssyhho+oooossssyydhysyho-

~/+smNdysoo00+: ————— «..--/+ssyhdNds-
.sydmmdhso+:-. . . .=-/+oohmdd/
/+hNMNdo/-. . :/++0ohNMN:
-ohMNh+-.
+ydNh/-.
+hmNy/-.. :
~-dNNds : we——=:ii-—-.. ...-/0OsssoosydmMMMh
yNMNds-. .-——- :. .-/ydNNmhyyhdmNNMMMM/
-////+osoo+- .sNNmhsyyhmMMMMMMMMy
:NMMMNs . +shhdmhss:.. .ohsyssdmNNMNmNNMMMN
+NMMMNO. . ..-3/: :S+---:/+0ssoohNMMd
ONMMMm/ . . e o/sy/.....-—:/0yNMMy.

+Ndohh/-...

.+o+smmds-. . : /oymNMMNh~
.+yoohNMNm/ - /osdNMMMMMMo
5 «..==/syy+::/+OoymMMMMMMMM :
-+oosyys////+oyhmNMMMMMMs
. —smNNNMMMMMdsos syhdNMMMMMm
/hhhysyyyhmNNdoyyyhdNMMMMN :

Ayhtoi:-///:
-sys+/-. -/
+yyhyo/...

/shhdyshdmm; « .+« .. ./syhhdmNNMmysyyhdNMMNm/
:syhhysyydmMN+: - weee.—:/+0sssSSSSSYdmNMMNm:
.osssdshhhydNh+//:- « + . —/+sydNMMNdmo
+o+/Nyhddshmy:oso+//: :———-—: //+oymNNNNmddNd

. .+yyomhhdddody/ : shhyyysssssyhhhhdmmmmddmNMd .

. ://oohhsmhNNmmhhyo-: oydddddddddddddmmmmmmNNNd .

i /I 11

-/ /+o+syohmNMNmdyhmy-. : /syddmmmmmmmmmmmmNNNNNd .
: /+00sydNMMMNsyhmd :
/o/++++ooosyhhmNMMNNyosyhms /--
://+sysoosydNdyyys :000sy+:///+++0syyhdmNNNNNMNy
://+/:/++osyhso+++//::/+00.~--/+0ssyyhhdmNNNMMMMy —

:+oyhdmmNNNNNNNNNNNNy .
: : /+0shdmNNNNNMNNNNo

////+++-=/00-=://+0syyhdmmNNNMNMMMNh+: .
/+o0s//+00: : / /+00ssyhhdmNNMMMMMMMMMNdy + : .
: /ooosyho/oo/ /++o0ssyhhddmmNMMMMMMMMMMMMMMNmhO ¢ .

/sssyyoosdoos+++0osyyhdddmmNN} INms -

:+oyhhs/+hyoysooooosyt (N2

INs .

/sssyssyds+oo+0000sy

96

6. Testing (Data correctness)

We ran the new system using all the data that we have and
then did one-to-one join to see what points are
missing/different. This allowed us find some edge cases that

we were able to eliminate

|
[number of points that diff

. number of points that diff
8,844,104,322.00 | > v
0.6959% .
0.0000%

3,538,956,198.00

97

6. Testing (Game Days)

"Game days" are when we test that our systems are resilient to errors in the ways
we expect, and that we have proper monitoring of these situations. If you're not
familiar with this idea, https://stripe.com/blog/game-day-exercises-at-stripe is a

good intro.

Come up with scenarios (a node is down, the whole service is down, etc.)
Expected behavior?

Run scenarios

Write down what happened

Summarize key lessons

oL~

98

https://stripe.com/blog/game-day-exercises-at-stripe

6. Testing (Game Days)

Test 1: All Rawls-Extract-Kafka-Connect nodes are

down

Results

Expected results

Actual results

Comments

after restart

‘rawls-extract-kafka-connect | FAIL We don't have monitors on

stopped consuming data® staging, so nothing fired but

should fire we observed that consumer
lag increased

https://app.datadoghqg.com/m

onitors/8719086

ASG should bring nodes up PASS 10:39 - we terminated all
nodes
10:47 - first node started
consuming

New nodes should start PASS

consuming from previous

point and the lag should start

dropping

Files should appear on S3 PASS 10:49 - first file appeared on

S3

99

6. Testing (Game Days)

Test 3: Slow Rawls-Extract-Kafka-Connect node

Increased CPU load

Prerequisites

e Rawls-Extract-Kafka-Connect working normally
e Pick a rawls-extract-kafka-connect node
e |Install stress command sudo apt-get install stress

Action

® date; sudo stress --cpu 8 --timeout 60

/. Sharding

Once we confirmed that our prototype works using the
whole volume of data, we decided to split the job into

shards:

1. We use spot instances, so losing a single job for a shard
will not result in losing the whole progress.

/. Sharding

Once we confirmed that our prototype works using the
whole volume of data, we decided to split the job into
shards:

1. We use spot instances, so losing a single job for a shard
will not result in losing the whole progress.

2. If for some reason there's an edge case, it'll only affect
a single shard.

/. Sharding

Once we confirmed that our prototype works using the
whole volume of data, we decided to split the job into
shards:

1. We use spot instances, so losing a single job for a shard
will not result in losing the whole progress.

2. If for some reason there's an edge case, it'll only affect
a single shard.

3. Ability to process shards on completely separate
clusters.

/. Sharding

We need to identify independent blocks of data, and in our
case it's orgs level since one org's data doesn't depend on
other org's data.

Kafka-Connect using config file decides in which shard an
org would go:

1. org-mod-X (we have 64 shared shards)
2. org-X (org's own shard)

/. Sharding

We know that a single job can process all the data we
have.

And now we have 64x shards which means that a single

shard can grow up to 64x times until we reach the same
volume.

If our volume of data continues doubling every year, that

would be enough for next 6 years after which we can
increase number of shards.

8. Migrations

In order to replace existing system we need to do lots of
things:

1. Run both systems alongside

8. Migrations

In order to replace existing system we need to do lots of
things:

1. Run both systems alongside
2. Figure out a release plan and a rollback plan

8. Migrations

In order to replace existing system we need to do lots of
things:

1. Run both systems alongside
2. Figure out a release plan and a rollback plan
3. Make sure that systems that depend on our data work

fine with both

8. Migrations

In order to replace existing system we need to do lots of
things:

1.
2.
3.

Run both systems alongside
Figure out a release plan and a rollback plan
Make sure that systems that depend on our data work

fine with both
Do partial migrations of customers

8. Migrations

In order to replace existing system we need to do lots of
things:

1.
2.
3.

o A

Run both systems alongside

Figure out a release plan and a rollback plan

Make sure that systems that depend on our data work
fine with both

Do partial migrations of customers

Check everything

8. Migrations

In order to replace existing system we need to do lots of
things:

1.
2.
3.

o0 A

Run both systems alongside

Figure out a release plan and a rollback plan

Make sure that systems that depend on our data work
fine with both

Do partial migrations of customers

Check everything

Do final migration

8. Migrations (Run both systems alongside)

1. As close as possible to production, same volume of
data

8. Migrations (Run both systems alongside)

1. As close as possible to production, same volume of
data

2. Output to a completely separate location, no one uses
this data yet

8. Migrations (Run both systems alongside)
1. As close as possible to production, same volume of
data

2. Output to a completely separate location, no one uses
this data yet

3. Make sure that there's no discrepancies with existing
data

8. Migrations (Run both systems alongside)

1.

As close as possible to production, same volume of
data

Output to a completely separate location, no one uses
this data yet

Make sure that there's no discrepancies with existing
data

Treat every incident as a real production incident

8. Migrations (Run both systems alongside)

1.

As close as possible to production, same volume of
data

Output to a completely separate location, no one uses
this data yet

Make sure that there's no discrepancies with existing
data

Treat every incident as a real production incident
Write postmortems

8. Migrations (Run both systems alongside)

This approach allowed us:

1. Find bottlenecks that we previously didn't see/know
about

8. Migrations (Run both systems alongside)

This approach allowed us:

1. Find bottlenecks that we previously didn't see/know
about

2. Figure out what kind of monitoring we were missing

8. Migrations (Run both systems alongside)

This approach allowed us:

1. Find bottlenecks that we previously didn't see/know
about

2. Figure out what kind of monitoring we were missing

3. Get people familiar with operating the system without
affecting production yet

8. Migrations (Run both systems alongside)

This approach allowed us:

1.

Find bottlenecks that we previously didn't see/know
about

Figure out what kind of monitoring we were missing

Get people familiar with operating the system without
affecting production yet

Figure out what additional tooling we need

8. Migrations (Release/Rollback plans)

Very important to have detailed plans

oY) Deploying new o Rollback new #983
buryat opened this issue on Apr 16 - 5 comments buryat opened this issue on Apr 16 - 0 comments

V. Preparations
i 1. Stop existing pipelines

(<< <]
\

1. Stop existing pipelines

Migration starts on ! = m

@

Stop: 2. Update schedules

low's tmbhay rie T] T P b I g LR

i Rt raia bacs gl wrmdiam ree b RElg T
@ a0 mnm perdren e

A v Ry 3. Delete new data

[P g e, [S

ey e eyt by parpad

2. Enabling rirsdd-iFlérval

@ Pt g e g sl b e b g day] [ol e G gy b B 350 DA
Fririarie =
] S gt Ve g o W e i

s L T e = P

[e A

4. Enable old schedules back

8. Migrations (Dependent systems)

1. Have a mechanism to switch some customers to new
files and back

8. Migrations (Dependent systems)

1.

Have a mechanism to switch some customers to new
files and back

Have a way for dependent pipelines to load some data
from the old system and some from the new system

8. Migrations (Dependent systems)

1.

Have a mechanism to switch some customers to new
files and back

Have a way for dependent pipelines to load some data
from the old system and some from the new system

Make sure that outputs of dependent pipelines are as
expected (we had to run those pipelines separately and
then compare outputs)

8. Migrations (Partial migrations of customers)

1. It's very expensive to run both systems alongside

8. Migrations (Partial migrations of customers)

1.
2.

It's very expensive to run both systems alongside

We decided to migrate some customers from old
system to the new one

a. Our org completely for a month and see how it goes

b. Big customer completely after a month

8. Migrations (Partial migrations of customers)

1. It's very expensive to run both systems alongside

2. We decided to migrate some customers from old
system to the new one

a. Our org completely for a month and see how it goes

b. Big customer completely after a month

3. Had to build a way for old/new systems to stop/start
writing data for certain customers after certain

timestamps

8. Migrations (Partial migrations of customers)

1. Difficult to implement and maintain migration
timestamps for each org

8. Migrations (Partial migrations of customers)
1. Difficult to implement and maintain migration
timestamps for each org

2. Certain things didn't have versioning, so we had to add
it

8. Migrations (Partial migrations of customers)

1.

Difficult to implement and maintain migration
timestamps for each org

Certain things didn't have versioning, so we had to add
it

For downstream pipelines everything must look like
nothing happened

8. Migrations (Partial migrations of customers)

1.

Difficult to implement and maintain migration
timestamps for each org

Certain things didn't have versioning, so we had to add
it

For downstream pipelines everything must look like
nothing happened

Lots of integration tests with migration timestamps

8. Migrations (Final migration)

Picked a date, added additional integration tests
Tested on staging

Rolled in production

Let the old system run for a week

Kill the old system

2 o

Cleanup

132

9. Results (Cost)

Old system

New system

Kafka Connect compute costs
Kafka Connect storage costs
Spark compute costs

Kafka retention savings

Total without Kafka savings
Total

Savings

100%

13%
39%
77%
-163%
129%
-34%
134%

9. Results (Speed)

Shard lag

| |
Thu 31 November

|
Nov 3

I
Sat9

9. Results (high-level)

1. Must work with new partitioning schema

9. Results (high-level)

1. Must work with new partitioning schema
2. Must be able to handle 10x growth (2x every year =
3 years)

9. Results (high-level)

1. Must work with new partitioning schema

2. Must be able to handle 10x growth (2x every year =
3 years)

3. Keep the cost at the same level as the existing

system

9. Results (high-level)

1. Must work with new partitioning schema

2. Must be able to handle 10x growth (2x every year =
3 years)

3. Keep the cost at the same level as the existing
system

4, Must be as fast as the existing system

9. Results (Operational)

1. Easily scalable without much manual intervention
a. Both storage and compute can scale independently

9. Results (Operational)

1. Easily scalable without much manual intervention
a. Both storage and compute can scale independently
2. Minimize impact on kafka

a. We reduced data retention in kafka
b. We actually store kafka data in S3 2x longer, so we actually
increased retention

9. Results (Operational)

1. Easily scalable without much manual intervention
a. Both storage and compute can scale independently
2. Minimize impact on kafka

a. We reduced data retention in kafka
b. We actually store kafka data in S3 2x longer, so we actually
increased retention
3. Be able to replay data easily
a. We had to replay kafka-connect and spark jobs many times
and it was easy

9. Results (Operational)

80

60

Hour Count

20

2019-03 2019-05 2019-07
Created Month

2019-09

2019-11

@ rawls
@ rawls-extract-kafka-connect
@ tailor-s

10. In conclusion

1.

Documents/RFCs/Plans

10. In conclusion

1. Documents/RFCs/Plans

2. Lots of testing

10. In conclusion

1. Documents/RFCs/Plans

2. Lots of testing

3. Difficult migrations

10. In conclusion

1.
2.
3.
4.

Documents/RFCs/Plans

_ots of testing

Difficult migrations

Many engineering obstacles

1

’
2
3.
4
5

0. In conclusion

. Documents/RFCs/Plans

. Lots of testing

Difficult migrations
. Many engineering obstacles

. Constant cost/speed forecasting

147

Vadim Semenov

vadim@datadoghg.com
_@databuryat.com
databuryat

vados

DATADOG

148

