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Map (org_id, metric_id) Kafka Topic/Partition
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Host/Consumer

File Descriptor per Metric ID

File Descriptor per Metric ID

File Descriptor per Metric ID

Encode & Compress

Write Custom Binary File Format to S3

Max 1M file 
descriptors per 
host
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Kafka Topic/Partition 0

Kafka Topic/Partition 1

Kafka Topic/Partition 2

Kafka Topic/Partition 3

Host/Consumer 0

Host/Consumer 1

Must set when previous consumer 
should stop and new start 
consuming, prone to mistakes
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Kafka Topic/Partition 0

Kafka Topic/Partition 1

Kafka Topic/Partition 2

Kafka Topic/Partition 3

Host/Consumer 0

Host/Consumer 1

Underutilization
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Kafka Topic/Partition 0 Host/Consumer 0

Once you get to one partition per host and 
1M of file descriptors, there's pretty much 
no room to upscale
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Kafka Topic/Partition 0 Host/Consumer 0

Have to start a new instance, reset offsets, 
replay data for the past X hours
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1. The original system

org_id
metric_id

timestamps
values

metadata

Payloads
Map (org_id, metric_id) Kafka Topic/Partition

Difficult to know what 
orgs/metrics will be big, so this 
model is prone to create 
hot/big topics/partitions
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1. The original system

org_id
metric_id

timestamps
values

metadata

Payloads
Service (org_id, metric_id) Kafka Topic/Partition 0

Kafka Topic/Partition 1

Automatically redirects payloads so each kafka 
topic/partition would be equally sized

We have to consume all 
topics/partitions to get all data for a 
metric id
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2. Requirements to the new system

Conceptual:

1. Must work with the new partitioning schema
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2. Requirements to the new system

Conceptual:

1. Must work with the new partitioning schema
2. Must be able to handle 10x growth (2x every year = 3 

years)
3. Keep the cost at the same level as the existing system
4. Must be as fast as the existing system
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2. Requirements to the new system

Operational:

1. Easily scalable without much manual intervention
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2. Requirements to the new system

Operational:

1. Easily scalable without much manual intervention
2. Minimize impact on kafka (reduce data retention time)
3. Be able to replay data easily
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2. Requirements to the new system (RFC)
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3. Decoupling state and compute

We need to load all topics/partitions to compose a single 
timeseries. Why not offload kafka to somewhere and then 
load the whole dataset with Spark?
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Encode & Compress

Write Custom Binary File Format to S3
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Encode & Compress

Write Custom Binary File Format to S3

State

Compute
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Write Custom Binary File Format to S3
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Compute

Storage
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Kafka

Encode & Compress

Write Custom Binary File Format to S3

S3

S3

Kafka-Connect

Spark
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3. Decoupling state and compute

State

Compute



Kafka

Encode & Compress

Write Custom Binary File Format to S3

Tailors 
Secondary
resolution
data

S3

S3

Kafka-Connect

Spark
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4. State: Kafka-Connect

https://docs.confluent.io/current/connect/index.html

A really simple consumer, writes payloads as-is to S3 every 10 minutes or once it 
hits 100k payloads. The goal is to deliver them to S3 as soon as possible with 
minimum overhead
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4. State: Kafka-Connect

Easy to operate:

1. "topics": "points-topic-0,points-topic-1" — simply add/remove topics and 
kafka-connect will rebalance everything across workers automatically.
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4. State: Kafka-Connect

Easy to operate:

1. "topics": "points-topic-0,points-topic-1" — simply add/remove topics and 
kafka-connect will rebalance everything across workers automatically.

2. Add/remove workers and it rebalances itself

3. Stopping the system will push it back 10 minutes only — we can reduce 
kafka retention
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4. State: Kafka-Connect
Keeping an eye on 
memory and GC
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4. State: Kafka-Connect

Every 10 
minutes we 
write a lot of 
data
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4. State: Kafka-Connect

Had to optimize writes:

1. Randomized key prefixes, to avoid having hot underlying S3 partitions
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4. State: Kafka-Connect

Had to optimize writes:

1. Randomized key prefixes, to avoid having hot underlying S3 partitions

2. Parallelize multipart uploads 
(https://github.com/confluentinc/kafka-connect-storage-cloud/pull/231)

3. Figure out optimal size of buffers to avoid OOMs (we run with s3.part.size=5MiB)

4. Still have lots of 503 Slow Down from S3, so we have exponential backoff for that and 
monitor retries
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4. State: Kafka-Connect
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5. Compute: Spark

Lots of unknowns: reading 10T points is very difficult:

1. Lots of objects, so we need to minimize GC
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5. Compute: Spark

Lost of unknowns: reading 10T points is very difficult:

1. Lots of objects, so we need to minimize GC
2. Figure out how to utilize internal APIs of Spark 
3. Is it even possible with Spark??
4. Make it cost-efficient
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5. Compute: Spark (Minimizing GC)

Reusing objects:

1. Allocate a 1MiB ByteBuffer once we open a file
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5. Compute: Spark (Minimizing GC)

Reusing objects:

1. Allocate a 1MiB ByteBuffer once we open a file
2. Keep decoding payloads (ZSTD) into the allocated 

memory
3. Get data from the same byte buffer
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5. Compute: Spark (FileFormat)

org.apache.spark.sql.execution.datasources.FileFormat

provide a reader of 
org.apache.spark.sql.catalyst.InternalRow

then point InternalRow directly to regions of memory in the 
allocated buffer
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5. Compute: Spark (FileFormat)
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5. Compute: Spark (FileFormat)

Directly delivers primitives 
to Spark's memory 
bypassing creating 
objects completely
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5. Compute: Spark (FileFormat)
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5. Compute: Spark (FileFormat)
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Can't read files bigger than 2GiB into memory because 
arrays in java can't have more than 2^31 - 8 elements. And 
sometimes kafka-connect produces very big files
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5. Compute: Spark (Files > 2GiB)



5. Compute: Spark (Files > 2GiB)

1. Copy a file locally
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5. Compute: Spark (Files > 2GiB)

1. Copy a file locally
2. MMap it using com.indeed.util.mmap.MMapBuffer, i.e. 

map the file into the virtual memory
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5. Compute: Spark (Files > 2GiB)

1. Copy a file locally
2. MMap it using com.indeed.util.mmap.MMapBuffer
3. Allocate an empty ByteBuffer using java reflections
4. Point ByteBuffer to a region of memory inside the 

MMapBuffer
5. Give ByteBuffer to ZSTD decompress
6. Everything thinks that it's a regular ByteBuffer but it's 

actually a MMap'ed file
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5. Compute: Spark (Files > 2GiB)
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5. Compute: Spark (Files > 2GiB)

Some files a very big, so we need to read them in parallel.

1. Set spark.sql.files.maxPartitionBytes=1GB
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1. Set spark.sql.files.maxPartitionBytes=1GB
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5. Compute: Spark (Files > 2GiB)

Some files a very big, so we need to read them in parallel.

1. Set spark.sql.files.maxPartitionBytes=1GB

2. Write length,payload,length,payload,length,payload

3. Each reader will have startByte/endByte

4. Keep skipping payloads until >= startByte
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5. Compute: Spark (Files > 2GiB)

Because of lots of 
tricks we have to track 
allocation/deallocation 
of memory in our 
custom reader. It's 
very memory efficient, 
doesn't use more than 
4GiB per executor
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5. Compute: Spark (Internal APIs)

DataSet.map(obj => …) 

1. must create objects
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DataSet.map(obj => …) 

1. must create objects
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representation)

3. has schema

4. type-safe
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5. Compute: Spark (Internal APIs)

DataSet.queryExecution.toRdd(InternalRow => ) 

1. doesn't create objects
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5. Compute: Spark (Internal APIs)

DataSet.queryExecution.toRdd(InternalRow => ) 

1. doesn't create objects

2. doesn't copy primitives

3. has no schema

4. not type-safe, you need to know position of all fields, 
easy to shoot yourself in the foot
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5. Compute: Spark (Internal APIs)

DataSet.queryExecution.toRdd(InternalRow => ) 

1. doesn't create objects

2. doesn't copy primitives

3. has no schema

4. not type-safe, you need to know position of all fields

5. InternalRow has direct access to Spark memory
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5. Compute: Spark (Internal APIs)
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5. Compute: Spark (Memory)

spark.executor.memory = 150g
spark.yarn.executor.memoryOverhead = 70g
spark.memory.offHeap.enabled = true,
spark.memory.offHeap.size = 100g
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5. Compute: Spark (GC)

offheap=false (default setting), almost 50% is spent in GC

offheap=true, GC time drops down to 20%

80

Here we only compare ratio of GC to task time,
screenshots were taken not at the same point 
within the job



5. Compute: Spark (GC)
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time spent in GC = 63.8/1016.3 = 6.2%



5. Compute: Spark (GC)

overall, GC is now ~0.3% 
of overall cpu time

82



83

Water break



6. Testing

1. Unit tests
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6. Testing (Load testing)

Once we had a working prototype, we started doing load 
testing to make sure that the new system is going to work for 
the next 3 years.

1. Throw 10x data
2. See what is slow/what breaks, write it down
3. Estimate cost
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6. Testing (Slowest parts)

Have good understanding of the slowest/most skewed parts 
of the job, put timers around them and have historical data to 
compare.

And we know limits of those parts and when to start 
optimizing them.
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6. Testing (Slowest parts)
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6. Testing (Easter egg)
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6. Testing (Data correctness)

We ran the new system using all the data that we have and 
then did one-to-one join to see what points are 
missing/different. This allowed us find some edge cases that 
we were able to eliminate
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6. Testing (Game Days)

"Game days" are when we test that our systems are resilient to errors in the ways 
we expect, and that we have proper monitoring of these situations. If you're not 
familiar with this idea, https://stripe.com/blog/game-day-exercises-at-stripe is a 
good intro.

1. Come up with scenarios (a node is down, the whole service is down, etc.)
2. Expected behavior?
3. Run scenarios
4. Write down what happened
5. Summarize key lessons
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7. Sharding

Once we confirmed that our prototype works using the 
whole volume of data, we decided to split the job into 
shards:

1. We use spot instances, so losing a single job for a shard 
will not result in losing the whole progress.
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7. Sharding

Once we confirmed that our prototype works using the 
whole volume of data, we decided to split the job into 
shards:

1. We use spot instances, so losing a single job for a shard 
will not result in losing the whole progress.

2. If for some reason there's an edge case, it'll only affect 
a single shard.

3. Ability to process shards on completely separate 
clusters.
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7. Sharding

We need to identify independent blocks of data, and in our 
case it's orgs level since one org's data doesn't depend on 
other org's data.

Kafka-Connect using config file decides in which shard an 
org would go:

1. org-mod-X (we have 64 shared shards)
2. org-X (org's own shard)

10
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7. Sharding

We know that a single job can process all the data we 
have.

And now we have 64x shards which means that a single 
shard can grow up to 64x times until we reach the same 
volume.

If our volume of data continues doubling every year, that 
would be enough for next 6 years after which we can 
increase number of shards.
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8. Migrations

In order to replace existing system we need to do lots of 
things:

1. Run both systems alongside
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8. Migrations

In order to replace existing system we need to do lots of 
things:

1. Run both systems alongside
2. Figure out a release plan and a rollback plan
3. Make sure that systems that depend on our data work 

fine with both
4. Do partial migrations of customers
5. Check everything
6. Do final migration
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8. Migrations (Run both systems alongside)

1. As close as possible to production, same volume of 
data
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8. Migrations (Run both systems alongside)

1. As close as possible to production, same volume of 
data

2. Output to a completely separate location, no one uses 
this data yet

3. Make sure that there's no discrepancies with existing 
data

4. Treat every incident as a real production incident

5. Write postmortems
11
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8. Migrations (Run both systems alongside)

This approach allowed us:

1. Find bottlenecks that we previously didn't see/know 
about
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8. Migrations (Run both systems alongside)

This approach allowed us:

1. Find bottlenecks that we previously didn't see/know 
about

2. Figure out what kind of monitoring we were missing

3. Get people familiar with operating the system without 
affecting production yet

4. Figure out what additional tooling we need

12
0



8. Migrations (Release/Rollback plans)
Very important to have detailed plans
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files and back
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8. Migrations (Dependent systems)

1. Have a mechanism to switch some customers to new 
files and back

2. Have a way for dependent pipelines to load some data 
from the old system and some from the new system

3. Make sure that outputs of dependent pipelines are as 
expected (we had to run those pipelines separately and 
then compare outputs)

12
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8. Migrations (Partial migrations of customers)

1. It's very expensive to run both systems alongside
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8. Migrations (Partial migrations of customers)

1. It's very expensive to run both systems alongside

2. We decided to migrate some customers from old 
system to the new one

a. Our org completely for a month and see how it goes

b. Big customer completely after a month

3. Had to build a way for old/new systems to stop/start 
writing data for certain customers after certain 
timestamps
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8. Migrations (Partial migrations of customers)
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timestamps for each org
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8. Migrations (Partial migrations of customers)

1. Difficult to implement and maintain migration 
timestamps for each org

2. Certain things didn't have versioning, so we had to add 
it

3. For downstream pipelines everything must look like 
nothing happened

4. Lots of integration tests with migration timestamps
13

1



8. Migrations (Final migration)

1. Picked a date, added additional integration tests

2. Tested on staging

3. Rolled in production

4. Let the old system run for a week

5. Kill the old system

6. Cleanup

132



9. Results (Cost)

13
3

Old system 100%

New system

Kafka Connect compute costs 13%

Kafka Connect storage costs 39%

Spark compute costs 77%

Kafka retention savings -163%

Total without Kafka savings 129%

Total -34%

Savings 134%
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1. ✅ Easily scalable without much manual intervention
a. Both storage and compute can scale independently

2. ✅ Minimize impact on kafka 
a. We reduced data retention in kafka
b. We actually store kafka data in S3 2x longer, so we actually 

increased retention
3. ✅ Be able to replay data easily

a. We had to replay kafka-connect and spark jobs many times 
and it was easy
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1. Documents/RFCs/Plans

2. Lots of testing

3. Difficult migrations

4. Many engineering obstacles

5. Constant cost/speed forecasting
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