
ASCEND
Intelligent Orchestration:
Data’s missing link

Sean Knapp,
Founder @ Ascend.io

Topics

● Quick Intro

● The State of Data Architectures

● Why Pipelines Suck

● Building a new Control Plane

● Making it Scale

● SaaS-ifying

● Future Topics

About Ascend

● Founded 2015

● Team of 30

● We <3 Data Pipelines

About Me (Sean Knapp) 👋🏻

● 15 years building data platforms & teams

● Search Frontend TL @Google:
first MapReduce in 2004

● Founder & CTO @Ooyala: 4B+ events/day

● Founder & CEO @Ascend: 1T+ events/day

Quick Intro

Smarter Pipelines.
Less Code.

Despite advancements in
every other part
of the data lifecycle...

Building. Pipelines. SUCKS.

The Current State of Data Architectures

Compute

Store

Redshift BigQuery

Data Warehouse Analytics & BI

Orchestrate

S3 GCS

Airflow Glue Data Factory Data Fusion

Raw Clean Enriched Curated

Collect Normalize Augment Refine

Access

Model

Query

Publish

Machine Learning

Data Science/
Adv. Analytics

Interaction Data

Transaction Data Data Replication Analytics & BI

Machine Learning

Data Science/
Adv. Analytics

Redshift BigQuery

Data Warehouse

Store

S3 GCS

Compute

Data Fusion
Orchestrate

Airflow Glue Data Factory

Pipelines: 90% of Time & Code

Why Pipelines Suck

Why Pipelines Suck
Pipelines

...becomes 1,000s of lines of this...

We are manually creating a query plan,
for every stage, of every pipeline

● Monitoring For New Data
● Ingest & Reformat Data
● Profile & Partition Data
● Analyze Downstream Dependencies
● Incremental Processing & Updates
● Intermediate Persistence
● Data & Task Deduplication
● Spark Parameterization & Tuning
● Data Consistency & Integrity Checks
● Error-Handling, Classification & Recovery
● Data Lineage & Privacy Compliance
● Garbage Collection & Lifecycle Management

Results

Databases & Warehouses
Where this...

1 SELECT date, country, gender, SUM(clicks)
2 FROM user_events
3 WHERE date >= DATE_SUB(NOW(), INTERVAL 30 DAY)

Database Engine

(1.5M lines of code) (25M lines of code)

1.0 2.0
Hosting Model Roll-Your-Own SaaS

Code Generation Manual Templatized

Interaction Model Code Code + GUI

Control System Scheduler Scheduler

Programming Model Imperative Imperative

Examples

Azure
Data Factory

Google
Data Fusion

Evolution of Pipeline Orchestration

AWS Glue

We looked for ideas in
adjacent spaces...

Who here has used a
Database?

Who here has heard of
React?

Who here uses
Kubernetes?

What do they all
have in common?

They’re Declarative.

Declarative programming is a programming
paradigm that expresses the logic of a
computation without describing its control flow…

… [in an] attempt to minimize or eliminate side
effects by describing what the program
must accomplish…

… rather than describe how to accomplish it.

“

”

Declarative vs. Imperative

The desired outcome

What vs How

Declarative Imperative

The usual outcome

Declarative Imperative

Declarative vs. Imperative
Declarative Imperative

Pros Less Code (like.. A LOT less)

Faster Dev Cycles

Adaptive to Changes

Less Maintenance

Flexible

High Levels of Control

Cons ● Domain specific

● Difficult to manually optimize

● Require annotations to override
automated behaviors

● State Management

● Stale assumptions in code

● Manual Optimizations

● Integrity Checks

● Failure Management

Imperative gives you the
ability to do anything, and
the responsibility to do
everything.

— Steven Parkes, CTO @ Ascend

“
”

Building a Control System for
Declarative Pipelines

Our master plan...

Declarative
Pipelines

What should a
good control system
do?

Lineage Tracking

Global optimization
+ local namespacing /

sandboxing

Storage

Optimization

Data-aware/ProfilingData Backfill Metadata CentricDynamic Partit
ioning

Functional (Immutable
of Blocks)

Static Type Checking
SLA-driven
Scheduling

Graph Algorithms

Pipeline
 Rewritin

g

Pipeline EvolutionGraph Rewriting

Dynamic Schedulin
g

(time + trigger +

auto)

Time series
Optimizations

Garbage Collection

Data Consistency
 &

Integrity Checks

--> Data Repair

Inter-transform
OptimizationProvenance

Multi-Cloud + Region
+ Zone + etc.

Configuration Management

Declarative

Dataflow Scheduling

Static Type
Influence

Aggregate Data
Types

Semantically
Transparent

Asynchronous Scheduling

SQL + Other
Languages

(Python & Pyspark)

Data & Task

Deduplication

Separation of Logic
& Execution

Hierarchical
Components

Functio
nal

Decomp
osition

Error Classification & Intelligent Retries

Then we spent 1, 2, 3 years building it!

So... how does it work?

Separation of Logic & Control

User defined logic

Logic Plane

Dynamic task generation to achieve desired state

Control Plane

Fully managed, portable cloud services

Data Plane

1. Is there anything I need to do?

2. What is the current state of my world?

3. What should it be?

4. What doesn’t match?

5. How do I “fix” it?5

4

3

2

1

The Control System Answers

1) Is there anything I need to do?

Transform (SQL)
● Filter
● Join / Enrich

Source: files in S3
● Location
● Creds
● Schema

Transform (SQL)
● Daily Aggregation

Write to DB
● Hostname
● Creds
● Update Rules

Logic
Plane

A Simple Analytics Pipeline

2) What is the current state of my world?

Transform (SQL)
● Filter
● Join / Enrich

Source: files in S3
● Location
● Creds
● Schema

Transform (SQL)
● Daily Aggregation

Write to DB
● Hostname
● Creds
● Update Rules

gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96_b039_4cc1_9566_2cfbb3ebe091/_ASCEND_METADATA.json
gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96_b039_4cc1_9566_2cfbb3ebe091/part-00000000.parquet
...
gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96_b039_4cc1_9566_2cfbb3ebe091/part-00000010.parquet
...

Logic
Plane

Data
Plane

A Simple Analytics Pipeline

Fragments
● Stored [bucket]/[uuid]/
● Metadata
○ P-SHA
○ UUID
○ Data SHA
○ Data Profile
○ Job Statistics

P-SHA
● Partition-level SHA

p_sha = data_sha # for source fragments
p_sha = sha(
 transform,
 u.p_sha for u in input_fragments)

Control
Plane

Fragments
● Stored [bucket]/[uuid]/
● Metadata
○ P-SHA
○ UUID
○ Data SHA
○ Data Profile
○ Job Statistics

3) What should it be?

Transform (SQL)
● Filter
● Join / Enrich

Source: files in S3
● Location
● Creds
● Schema

Transform (SQL)
● Daily Aggregation

Write to DB
● Hostname
● Creds
● Update Rules

gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96_b039_4cc1_9566_2cfbb3ebe091/_ASCEND_METADATA.json
gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96_b039_4cc1_9566_2cfbb3ebe091/part-00000000.parquet
...
gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96_b039_4cc1_9566_2cfbb3ebe091/part-00000010.parquet
...

Logic
Plane

Data
Plane

A Simple Analytics Pipeline

Control
Plane

3) Generate Expected P-SHA Set
● For each Component, determine Partitions
● Analyze Transform

 → Map, Partial, Full Reduction?
● Load Upstream Data Profile

 → Determine Input Partitions
 → Calculate p_sha

P-SHA
● Partition-level SHA

p_sha = data_sha # for source fragments
p_sha = sha(
 transform,
 u.p_sha for u in input_fragments)

Fragments
● Stored [bucket]/[uuid]/
● Metadata
○ P-SHA
○ UUID
○ Data SHA
○ Data Profile
○ Job Statistics

P-SHA
● Partition-level SHA

p_sha = data_sha # for source fragments
p_sha = sha(
 transform,
 u.p_sha for u in input_fragments)

4) What doesn’t match?

Transform (SQL)
● Filter
● Join / Enrich

Source: files in S3
● Location
● Creds
● Schema

Transform (SQL)
● Daily Aggregation

Write to DB
● Hostname
● Creds
● Update Rules

gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96_b039_4cc1_9566_2cfbb3ebe091/_ASCEND_METADATA.json
gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96_b039_4cc1_9566_2cfbb3ebe091/part-00000000.parquet
...
gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96_b039_4cc1_9566_2cfbb3ebe091/part-00000010.parquet
...

Logic
Plane

Data
Plane

A Simple Analytics Pipeline

Control
Plane

3) Generate Expected P-SHA Set
● For each Component, determine Partitions
● Analyze Transform

 → Map, Partial, Full Reduction?
● Load Upstream Data Profile

 → Determine Input Partitions
 → Calculate p_sha

4) Identify Missing P-SHAs
● Input P-SHAs missing?
→ Queue for update

● Self P-SHA missing?
→ Queue for update

Fragments
● Stored [bucket]/[uuid]/
● Metadata
○ P-SHA
○ UUID
○ Data SHA
○ Data Profile
○ Job Statistics

P-SHA
● Partition-level SHA

p_sha = data_sha # for source partitions
p_sha = sha(
 transform,
 u.p_sha for u in input_partitions)

5) How do I “fix” it?

Transform (SQL)
● Filter
● Join / Enrich

Source: files in S3
● Location
● Creds
● Schema

Transform (SQL)
● Daily Aggregation

Write to DB
● Hostname
● Creds
● Update Rules

gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96_b039_4cc1_9566_2cfbb3ebe091/_ASCEND_METADATA.json
gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96_b039_4cc1_9566_2cfbb3ebe091/part-00000000.parquet
...
gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96_b039_4cc1_9566_2cfbb3ebe091/part-00000010.parquet
...

Logic
Plane

Data
Plane

A Simple Analytics Pipeline

Control
Plane

3) Generate Expected P-SHA Set
● For each Component, determine Partitions
● Analyze Transform

 → Map, Partial, Full Reduction?
● Load Upstream Data Profile

 → Determine Input Partitions
 → Calculate p_sha

4) Identify Missing P-SHAs
● Input P-SHAs missing?
→ Queue for update

● Self P-SHA missing?
→ Queue for update

5) Fix It
● Generate Spark Job
● Analyze input transform & data
● Dynamically generate Spark params
● Monitor job for success
● Commit new P-SHA
● … repeat ...

Scaling to 1B Partitions
and 1T+ records per day

● SHAs: lots and lots of SHAs (and SHAs of SHAs)
● Caching: lots and lots of caching
● Trees, not lists

○ Leverage time-series partitions
○ Aggregate metadata
○ SHAs at each node, not just leaves

● Be Lazy: Only do as much work as is useful right now

Scaling the Control Plane

● Do less work

○ Intermediate Data Persistence

○ Data & Task De-duplication

● Do the right kind of work

○ Small file aggregation

○ Small job optimizations (local mode)

○ Specialized compute pools for different tasks

● Do it efficiently

○ Auto-Scaling Spark on Kubernetes w/ Spot/Preemptible Instances

○ Single-zone clusters (reduce network costs)

Scaling the Data Plane

SaaS-ifying the Control Plane

Metadata
Store

Data Plane (k8s)

Azure

Object Store

Load
Balancer

Spark Jobs

Driver

Executor

Executor

Executor

AWS GCP

Control Plane (k8s)

High Perf WorkersAPI

Authn

Authz

Event
Notification

KubeSpark

Records

Redis

Scheduler

Worker
(Supervise)

nginx

Frontend

● Garbage Collection: background task

● Multi-cloud abstractions: k8s, MinIO

● Data repair: failure to retrieve data → delete p-sha → self-heal

● Part files: similarities & differences with other fragments

● Resource Management: capacity-aware Control Plane

● SLA Driven Scheduling & Job Prioritization:
 per-component priority + upstream inheritance

● Scaling Spark on Kubernetes

● Scaling to 100+ environments: terraform, templates, monitoring, & automation

What we didn’t discuss...

Come ask us @ Office Hours!!!
(4th floor in 476a)

Declarative programming is a paradigm that
expresses the logic of a computation without
describing its control flow…

… [in an] attempt to minimize or eliminate
side effects by describing what the
program must accomplish…

… rather than describe how to accomplish it.

“

”

Declarative Imperative

The What

Logic + Data → Tasks

The How

State + Tasks → Data

tl;dr

Declarative
Pipelines

Less Code
Faster Dev

Fewer Breaks
==

PROFIT!

Intelligent
Control Plane

Smarter Pipelines.
Less Code.

Smarter Pipelines.
Less Code.

See You in Office Hours

● Right after this, 4th floor, 476a

● Ask me anything

● Meet our CTO, Steven Parkes

● Visit our booth at the Partner
Spotlight gallery for a live demo
& free swag

● Visit us @ www.ascend.io

