ASCEND

Intelligent Orchestration:
Data’s missing link

Sean Knapp, L |
Founder @ Ascend.io o @

<> ASCEND.I0

Topics

Quick Intro

The State of Data Architectures
Why Pipelines Suck

Building a new Control Plane
Making it Scale

SaaS-ifying

Future Topics

Quick Intro

About Ascend
e Founded 2015
e Team of 30

e We <3 Data Pipelines

About Me (Sean Knapp) &
ZOMCENDID +:OOYALA Google
e 15 years building data platforms & teams

e Search Frontend TL @Google:
first MapReduce in 2004

e Founder & CTO @Ooyala: 4B+ events/day
e Founder & CEO @Ascend: 1T+ events/day

Smarter Pipelines.

Less Code.
e ASCEND.GIA[]

)cE Grting Starte IeT Device and Weother A Q Searchin Dataflow

TIMEUNE (3 QUERY ©

DATA LAKE

[DF] Usage, Weather
L]

Amazon S3 Azure Blob Google Cloud Usage, Weather K-Means Cluster

Storage L
oy o Weatrar © UPTO DATE X @ UPTO DATE
- © 3,83k porttons © 363 part
DATA WAREHOUSE © upToDATE ecords
Usage, Weather, Solar * [DF] Usage, Weather, Solar...
portiions .
K-Means Cluster w/ Solar
Amazon Google Snowflake
Redshift BigQuery O Ur IO CE
DATABASE
MySQL Postgres SQL Server Declarﬂtlve P'pe ines
STREAMING Autonomous Control Plane
@ @ Serverless Spark
Amazon Apache
\mazor pach Structured Data Lake

Multi-Cloud Kubernetes

[DF] Clusters

© UPTODATE B records

© 3.3k partitions
Cluster Info

© UPTODATE

® 1 partition
[DF] Clusters w/ Solar

© upToDATE 8 records

@ 353k partitions
Cluster Info w/ Solar 4

© RESHAPING 12 records,

0: 1 partition

Clusters o}

NOTEBOOKS
s
@ Jupyter
X ~
Apache Jupyter
Zeppelin Notebook
MACHINE LEARNING
@ .
DataRobot H20.ai
Bl & VIZ
PowerB| Tableau

APPS
OIOIO

Appsflyer Facebook Salesforce

Despite advancements in
every other part
of the data litecycle...

Building. Pipelines. SUCKS.

The Current State of Data Architectures

—— Pipelines: 90% of Time & Code —

Interaction Data

] &y (@

Transaction Data

SQL Server

ba o . » 1
Orchestrate x] h
Airflow Glue Data Factory Data Fusion Model
Compute
P llect Normalize Augment Refine
Spark Query
Store
* 6 Raw Clean Enriched Curated Publish
s3 GCS

Data Replication

\\\\‘ Fivetran E Stitch

Data Warehouse

e snowflake -

ar Redshift BigQuery

Machine Learning

® H0a0

DataRobot

Data Science/
Adv. Analytics

Jupyter
o= databricks ez

Analytics & Bl

++ 2
iy tableauv |Goker

)

Why Pipelines Suck

Why Pipelines Suck

Databases & Warehouses Pipelines
Where this... ..becomes 1,000s of lines of this...
1 SELECT date, country, gender, (clicks)

2 FROM user_events
3 WHERE date >= DATE_SUB(NOW(), INTERVAL 30 DAY)

Monitoring For New Data
Ingest & Reformat Data

Profile & Partition Data

Analyze Downstream Dependencies
Incremental Processing & Updates
Intermediate Persistence

Data & Task Deduplication

Spark Parameterization & Tuning
Data Consistency & Integrity Checks

Database Engine

l\/lgSQRL ORACLE
(1.5M lines of code) (25M lines of code)

Error-Handling, Classification & Recovery
Data Lineage & Privacy Compliance
Garbage Collection & Lifecycle Management

We are manually creating a query plan,

Results L
for every stage, of every pipeline

Hosting Model
Code Generation
Interaction Model

Control System

Programming Model

Examples

Evolution of Pipeline Orchestration

1.0 2.0
Roll-Your-Own SaaS
Manual Templatized
Code Code + GUI
Scheduler Scheduler
Imperative Imperative
cron R iflow = Ju O
W LUi9i AWSGlue Azure Google

Data Factory Data Fusion

We looked for ideas in
adjacent spaces...

Who here has used @
Database’

Who here has heard of
React’

Who here uses
Kubernetes’

VWhat do they all
have In common?

hey're Declarative.

‘ ‘ Declarative programming is a programming
paradigm that expresses the logic of a
computation without describing its control flow...

.. [In an] attempt to

... rather than describe how to accomplish it.

Declarative vs. Imperative

The desired outcome

What vs How

LS 4 7("

DOITELL yw '
| WHAT THE HELL TS THIS? ou»

[WHAT 10 BO‘?

Declarative Imperative

The usual outcome

BE

N A

Declarative Imperative

Declarative vs. Imperative

Declarative

Imperative

< J < T < <)

Less Code (like.. A LOT less)
Faster Dev Cycles
Adaptive to Changes

Less Maintenance

Domain specific
Difficult to manually optimize

Require annotations to override
automated behaviors

I

Flexible

High Levels of Control

State Management

Stale assumptions in code
Manual Optimizations
Integrity Checks

Failure Management

L Imperative gives you the
ability to do anything, and
the responsibility to do
everything.))

— Steven Parkes, CTO @ Ascend

Building a Control System for
Declarative Pipelines

Our master plan...

Declarative 4 ? Profit

Pipelines =

What should o
good control system
do?

o Pav Yo

pypani DA Backkl Metadata ony,;,
Muthi-Cloud + F-oq10n stati . . SLA-driven
+ Zone + ot Dh&akinﬂw Scheduling

DAk Gonatatohoy ¢
\y\\'pa_\Y\\’ | 9\\(70\‘?
_—7 Dok FopAY

Provenance

Declarative

anehional (imwutable
of Blocks)

qarlmg& Oollection

WY ”“(\)6\“0)
Y

0 ""ﬁgumﬁan

Srorfyr
w\;\m,,,a\\'\o\f\

Gragh K&wrﬂ‘mg Fipeline EVqu-HM

. DnM—nwnr&/?roﬁlinﬂ

Grapgh Pclgorﬂ'hme

Datatow $ah&4u|inﬂ T ——

P 0Au7‘\0ﬂ\'\°“ T —

DynAmo Soheduing Global optimiz-ation
e + ¥ ngaet + + local Mw«&eyﬂoiv\ﬂ /
Auto) sandboring

P(%Y%M’& Data

Types Lineage Tracking

sol + Other

Inker-transkorm Lanquage-s

Optimiz-ation

(Python & Pyspark)

—

B\

oA

‘) “v\:\ on
‘v

4
(,(‘,0 ?0

SepAration of Logio
¢ Pyecution

Asyn c hrbﬂoq;

Hierarchical Scheduly
g

Gomponents

Error OlnssiﬁonHM H

nteligent ¢, Hie. Semantically

Transparent

paka & Thst

_ Time sorips
state Type Optimizations

IWduehce

Then we spent 4 2 3 years building it!

- e
£ =4

II"S NOT'AS £ASY
AS T THOUGHT Tt WAS?

So... how does it work?

Separation of Logic & Control

Logic Plane

User defined logic

- ganamaatil e l | Control Plane
} RN Eas Dynamic task generation to achieve desired state
L
I I q I Data Plane
Fully managed, portable cloud services
| [| I i

The Control System Answers

1, Isthere anything I need to do?

2, Whatis the current state of my world?
3, Whatshould it be?
4, Whatdoesn't match?

How do | “fix” it?

(U

1) Is there anything | need to do?

A Simple Analytics Pipeline

Source: files in S3

Transform (SQL)
Logic e Location

Transform (SQL)

Write to DB
o Filter e Daily Aggregation e Hostname
Plane e Creds e Join/ Enrich 1 e Creds
e Schema

e Update Rules

2) What is the current state of my world?

A Simple Analytics Pipeline

Fragments 1 P-SHA
e Stored [bucket]/[uuid e Partition-level SHA
° Metodota/
Control o P-SHA p sha = data sha # for source fragments
Plane o UUID p sha = sha(
o Data SHA transform,
o Data Profile u.p_sha for u in input fragments)
o Job Statistics
gs://ascend-io-dev-sean-dev-sean-record-fragments dd3c96_b039_4cc1_9566_20fbb@ASCEND_METADATA.json
DCItCI gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96 _BU39 4dcct—95662TTBb3ebe091/part-00000000.parquet

Plane gs://ascend-io-dev-sean-dev-sean-record-fragments/21dd3c96 b039 4ccl 9566 2cfbb3ebe091/part-00000010.parquet

3) What should it be?

Control
Plane

A Simple Analytics Pipeline

3) Generate Expected P-SHA Set

e For each Component, determine Partitions
e Analyze Transform

— Map, Partial, Full Reduction?
e Load Upstream Data Profile

— Determine Input Partitions
— Calculate p_sha

P-SHA
e Partition-level SHA

p sha = data sha
p_sha = sha(
transform,

for source fragments

u.p sha for u in input fragments)

4) What doesn’t match?

A Simple Analytics Pipeline

4) ldentify Missing P-SHAs
e Input P-SHAS missing?
Control — Queue for update

Plane e Self P-SHA missing?

— Queue for update

5) How do | “fix” it?

A Simple Analytics Pipeline

5) Fix It
e Generate Spark Job
Control e Analyze input transform & data
Plane

e Dynamically generate Spark params
e Monitor job for success

e Commit new P-SHA

e ..repeat...

Scaling to 1B Partitions
and 1T+ records per day

Scaling the Control Plane

e SHAs: lots and lots of SHAs (and SHAs of SHAS)
e Caching: lots and lots of caching
e Trees, not lists

o Leverage time-series partitions

o Aggregate metadata

o SHAs at each node, not just leaves

e Be Lazy: Only do as much work as is useful right now

Scaling the Data Plane

e Do less work
o Intermediate Data Persistence
o Data & Task De-duplication
e Do the right kind of work
o Small file aggregation
o Small job optimizations (local mode)
o Specialized compute pools for different tasks
e Do it efficiently
o Auto-Scaling Spark on Kubernetes w/ Spot/Preemptible Instances

o Single-zone clusters (reduce network costs)

SaaS-ifying the Control Plane

——

Metadata
Store

Load
Balancer

Control Plane (k8s)

Data Plane (k8s)

KubeSpark ™ qurk JObS
—> nginx
™\ Authn Workj‘ \ Executor
(Supervise) ™ . Z
Driver Executor (@ee® . . .
Frontend \ \ Executor
/ Scheduler \\
API Event ~> High Perf Workers 000
Notification L \
Records \
N Authz Redis L — \ Object Store
L J
AWS Azure GCP

What we didn’t discuss...

e Garbage Collection: background task

e Multi-cloud abstractions: k8s, MinlO

e Data repair: failure to retrieve data — delete p-sha — self-heal
e Part files: similarities & differences with other fragments

e Resource Management: capacity-aware Control Plane

e SLA Driven Scheduling & Job Prioritization:
per-component priority + upstream inheritance

e Scaling Spark on Kubernetes

e Scaling to 100+ environments: terraform, templates, monitoring, & automation

Come ask us @ Office Hours!!!
(4th floor in 476q)

‘ ‘ Declarative programming is a paradigm that
expresses the logic of a computation without
describing its control flow...

.. [In an] attempt to

... rather than describe how to accomplish it.

tl:dr

Declarative Imperative

The What The How

Logic + Data — Tasks State + Tasks — Data

Puase]l PHasEZ PHASES

Declarative
Pipelines

Intelligent
Control Plane

Less Code
Faster Dev
Fewer Breaks

PROFIT!

SOUTHPARK.CC.COM

Smarter Pipelines.

Less Code.
e ASCEND.GIA[]

)cE Grting Starte IeT Device and Weother A Q Searchin Dataflow

TIMEUNE (3 QUERY ©

DATA LAKE

[DF] Usage, Weather
L]

Amazon S3 Azure Blob Google Cloud Usage, Weather K-Means Cluster

Storage L
oy o Weatrar © UPTO DATE X @ UPTO DATE
- © 3,83k porttons © 363 part
DATA WAREHOUSE © upToDATE ecords
Usage, Weather, Solar * [DF] Usage, Weather, Solar...
portiions .
K-Means Cluster w/ Solar
Amazon Google Snowflake
Redshift BigQuery O Ur IO CE
DATABASE
MySQL Postgres SQL Server Declarﬂtlve P'pe ines
STREAMING Autonomous Control Plane
@ @ Serverless Spark
Amazon Apache
\mazor pach Structured Data Lake

Multi-Cloud Kubernetes

[DF] Clusters

© UPTODATE B records

© 3.3k partitions
Cluster Info

© UPTODATE

® 1 partition
[DF] Clusters w/ Solar

© upToDATE 8 records

@ 353k partitions
Cluster Info w/ Solar 4

© RESHAPING 12 records,

0: 1 partition

Clusters o}

NOTEBOOKS
s
@ Jupyter
X ~
Apache Jupyter
Zeppelin Notebook
MACHINE LEARNING
@ .
DataRobot H20.ai
Bl & VIZ
PowerB| Tableau

APPS
OIOIO

Appsflyer Facebook Salesforce

See You in Office Hours

e Right after this, 4th floor, 476a B 2
IS A

CLUSTER

e Ask me anything
e Meet our CTO, Steven Parkes

e Visit our booth at the Partner
Spotlight gallery for a live demo
& free swag

e Visitus @ www.ascend.io

.10

