A Modern Love Story:

Machine Learning Engines \&
The Global Sports Betting Industry

Lloyd Danzig

U.S. Legalization Map

Green	Live, Legal Sports Betting (13 States)
Light Green	Legal Sports Betting, Not Yet Operational (6 States + DC)
Blue	Active 2019 Sports Betting Legislation (5 States)
Light Blue	Dead Sports Betting Legislation in 2019 (19 States)
Gray	No Sports Betting Bills in 2019 (8 States)

Source: AGA
As of: November 7, 2019

AMERICAN
GAMING GAMING
Association

Future Trends Betting on Esports

- Fans are projected to wager \$30 billion on Esports in 2020
- Sportsbook operators would generate over \$2 billion in GGR
- Challenges: lack of reliable data, pricing difficulties, and cheating

Esportsbook betting volume by game

```
League of Legends \(\quad \mathrm{CS}: \mathrm{GO} \quad\) Dota \(2 \square\) Starcraft \(2 \square\) Other
```


Future Trends Sports Betting Bots

- Sophisticated forecasting models
- Convert event probabilities into prices
- Look for differences in model price and market price
- Seek out arbitrage opportunities

Future Trends Blockchain Sportsbooks

- "Provably Fair" gaming
- Guaranteed, instantaneous payouts via smart contracts
- Streamlined, real-time financial auditing

Revenue Model: Sportsbook

 have to manage risk and set prices/odds proficiently.
Revenue Model: Sportsbook

 have to manage risk and set prices/odds proficiently.Alice thinks New York will win
Bob thinks New York will lose
Alice risks $\$ 100$ to win $\$ 190$ Bob risks \$225 to win \$100

Revenue Model: Sportsbook

Sportsbook operators

 have to manage risk and set prices/odds proficiently.Alice thinks New York will win

Bob thinks New York will lose
Alice risks $\$ 100$ to win $\$ 190$ Bob risks \$225 to win \$100

New York wins. Sportsbook returns Alice's $\$ 100$ plus $\$ 190$ winnings Profit = \$325-\$290 = \$35

Revenue Model: Sportsbook

Alice thinks New York will win
Bob thinks New York will lose
Alice risks \$100 to win \$190 Bob risks \$225 to win \$100

New York wins. Sportsbook returns Alice's $\$ 100$ plus $\$ 190$ winnings Profit = \$325-\$290=\$35

New York loses. Sportsbook returns Bob’s \$225 plus \$100 winnings Profit $=\$ 325-\$ 325=\$ 0$

Sportsbook Odds:

Revenue Model: Betting Exchange

Alice thinks New York has a 33\% chance of winning, represented in fair odds as +203 .

NEW YORK KNICKS
DETROIT PISTONS

Exchanges offer a number of dramatic advantages over sportsbooks, most notably in the form of drastically improved odds.

Sportsbook Odds:

Revenue Model: Betting Exchange

Alice thinks New York has a 33\% chance of winning, represented in fair odds as +203 .

She offers to accept a wager from anyone interested in Detroit -203 (to win $\$ 100$).

NEW YORK KNICKS DETROIT PISTONS

Exchanges offer a number of dramatic advantages over sportsbooks, most notably in the form of drastically improved odds.

Sportsbook Odds:

Revenue Model: Betting Exchange

Exchanges offer a number of dramatic advantages over sportsbooks, most notably in the form of drastically improved odds.

Sportsbook Odds:

Revenue Model: Betting Exchange

Exchanges offer a number of dramatic advantages over sportsbooks, most notably in the form of drastically improved odds.

Sportsbook Odds:

Revenue Model: Betting Exchange

NEW YORK KNICKS	+190	${ }_{\text {+ }}^{+5.5}(-10)$
DETROIT PISTONS	-225	-5.5

Alice thinks New York has a 33% chance of winning, represented in fair odds as +203 .

She offers to accept a wager from anyone interested in Detroit -203 (to win \$100). The best sportsbook is offering 'Detroit -225 , so Bob accepts the other side of Alice's wager.

New York wins. Bob pays Alice $\$ 203$, a small percentage of which goes to the exchange. Operator Profit $=\$ 10.15$

New York loses. Alice pays Bob $\$ 100$, a small percentage of which goes to the exchange. Operator Profit = \$5.00

Exchanges offer a number of dramatic advantages over sportsbooks, most notably in the form of drastically improved odds.

Revenue Model: Customer Perspective

veats of	Sportsbook	Exchange
O	\$190.00	
$\underset{\substack{8 \\ 8}}{\substack{200}}$	\$44.44	

Revenue Model: Customer Perspective

	Sportsbook	Exchange
Q	\$190.00	\$193.00
$\underset{\text { boo }}{8}$	\$44.44	

Ultimately, all

Revenue Model: Customer Perspective

	Sportsbook	Exchange
O	\$190.00	\$193.00
$e_{\text {boc }}^{2 l e}$	\$44.44	\$46.80

having used the exchange.

Ultimately, all

Revenue Model: Customer Perspective

,	Sportsbook	Exchange
8	\$190.00	\$193.00
8	\$44.44	\$46.80

	Sportsbook	Exchange
Q	\$52.63	
θ	\$225.00	

Ultimately, all

Revenue Model: Customer Perspective

,	Sportsbook	Exchange
8	\$190.00	\$193.00
8	\$44.44	\$46.80

, masit	Sportsbook	Exchange
$\underbrace{}_{\text {alce }}$	\$52.63	\$51.85
8	\$225.00	

Ultimately, all

Revenue Model: Customer Perspective

,	Sportsbook	Exchange
8	\$190.00	\$193.00
8	\$44.44	\$46.80

	Sportsbook	Exchange
0	\$52.63	\$51.85
8	\$225.00	\$213.68

having used the exchange.

Industry Standard
 Monte Carlo Simulation

Monte Carlo simulation is a method for iteratively evaluating a deterministic model using sets of nondeterministic (i.e. random) numbers as inputs.
E.g. "What is the probability of rolling a 1 during a single throw of a six-sided die?"

Industry Standard Monte Carlo Simulation

Monte Carlo simulation is a method for iteratively evaluating a deterministic model using sets of nondeterministic (i.e. random) numbers as inputs.
E.g. "What is the probability of rolling a 1 during a single throw of a six-sided die?"

Die	
	\square
	0
	[0]
	[8]
	(\%)
	[8]

Industry Standard Monte Carlo Simulation

Monte Carlo simulation is a method for iteratively evaluating a deterministic model using sets of nondeterministic (i.e. random) numbers as inputs.
E.g. "What is the probability of rolling a 1 during a single throw of a six-sided die?"

Die	\# of Outcomes
\square	16648
0	16521
[0]	16910
(0)	16539
(\%)	16843
(8)	16540

Industry Standard Monte Carlo Simulation

Monte Carlo simulation is a method for iteratively evaluating a deterministic model using sets of nondeterministic (i.e. random) numbers as inputs.
E.g. "What is the probability of rolling a 1 during a single throw of a six-sided die?"

Die	\# of Outcomes	\% of Outcomes
\square	16648	16.65\%
0	16521	16.52\%
-0	16910	16.91\%
(0)	16539	16.54\%
®0	16843	16.84\%
[88)	16540	16.54\%

Industry Standard Monte Carlo Simulation

Monte Carlo simulation is a method for iteratively evaluating a deterministic model using sets of nondeterministic (i.e. random) numbers as inputs.
E.g. "What is the probability of rolling a 1 during a single throw of a six-sided die?"

Die	\# of Outcomes	\% of Outcomes
\square	16648	16.65\%
-0	16521	16.52\%
-0	16910	16.91\%
(0)	16539	16.54\%
(\%)	16843	16.84\%
(8)	16540	16.54\%

Industry Standard
 Monte Carlo Simulation

Industry Standard
 Monte Carlo Simulation

Team	Avg. Runs Scored
New York Yankees	5.588
Boston Red Sox	5.390

Industry Standard
 Monte Carlo Simulation

Team	Avg. Runs Scored	Avg. Runs Against
New York Yankees	5.588	4.375
Boston Red Sox	5.390	4.732

Industry Standard
 Monte Carlo Simulation

Team	Avg. Runs Scored	Avg. Runs Against	Adj. Runs Scored	StDev (Runs Scored)
New York Yankees	5.588	4.375	5.142	3.001
Boston Red Sox	5.390	4.732	4.856	3.358

Industry Standard $=N O R M \cdot I N V\left(R A N D(), \mu_{\text {Yankees }}, \sigma_{\text {Yankees }}\right)$ Monte Carlo Simulation

Team	Avg. Runs Scored	Avg. Runs Against	Adj. Runs Scored	StDev (Runs Scored)	Norm.Inv_Runs
New York Yankees	5.588	4.375	5.142	3.001	3.358
Boston Red Sox	5.390	4.732	4.856	7.945	

Industry Standard
 Monte Carlo Simulation

Team	Avg. Runs Scored	Avg. Runs Against	Adj. Runs Scored	StDev (Runs Scored)	Norm.Inv_Runs
New York Yankees	5.588	4.375	5.142	3.001	10.147
Boston Red Sox	5.390	4.732	4.856	3.358	7.945

Industry Standard
 Monte Carlo Simulation

Team	Avg. Runs Scored	Avg. Runs Against	Adj. Runs Scored	StDev (Runs Scored)	Norm.Inv_Runs
New York Yankees	5.588	4.375	5.142	3.001	10.147
Boston Red Sox	5.390	4.732	4.856	3.358	7.945

Simulation \#	New York Yankees	Boston Red Sox	Winner
1	10.147	7.945	New York Yankees
2	0.643	5.715	Boston Red Sox
3	3.123	5.009	Boston Red Sox
4	9.203	4.555	New York Yankees
5	4.150	7.523	Boston Red Sox
6	1.737	4.017	Boston Red Sox
7	2.147	3.671	Boston Red Sox
.	.	.	.
.	.	.	.
.	.	.	.
.	.	.	.
.	.	.	.
.	.	.	.
9997	4.040	3.188	New York Yankees
9998	4.667	5.493	Boston Red Sox
9999	7.927	4.856	New York Yankees
10000	4.934	0.000	New York Yankees

Industry Standard
 Monte Carlo Simulation

Team	Avg. Runs Scored	Avg. Runs Against	Adj. Runs Scored	StDev (Runs Scored)	Norm.Inv_Runs
New York Yankees	5.588	4.375	5.142	3.001	10.147
Boston Red Sox	5.390	4.732	4.856	3.358	7.945

Simulation \#	New York Yankees	Boston Red Sox	Winner
1	10.147	7.945	New York Yankees
2	0.643	5.715	Boston Red Sox
3	3.123	5.009	Boston Red Sox
4	9.203	4.555	New York Yankees
5	4.150	7.523	Boston Red Sox
6	1.737	4.017	Boston Red Sox
7	2.147	3.671	Boston Red Sox
.	.	.	.
.	.	.	.
.	.	.	.
.	.	.	.
.	.	.	.
.	.	.	.
9997	4.640	3.188	New York Yankees
9998	7.927	5.493	Boston Red Sox
9999	4.934	4.856	New York Yankees
10000		0.000	New York Yankees

Computer Vision

Explanatory Augmented Reality

Competitor Overlays

Viewpoint Synthesis

Performance Analysis

Computer Vision

INCS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALUY IMPOSSIBLE.
i
$=\sqrt{7}$.

Wearables

Use Case Summary

$\frac{+1=}{x \mid=}$ Handicapping

Risk Management

Responsible Gaming
(10n

Causes for Concern

$\left[\begin{array}{l}\circ{ }^{\circ} \mathrm{F} \\ 0 \\ 0\end{array}\right]$ Black Box Problem

Flash Crash Potential

Odds Manipulation

Fraud Masking

Causes for Concern

Handicapping (Pre-match)

Machine Learning offers dramatic improvements over industry standards in setting pre-match odds.

These benefits should all be viewed in the context of reducing human error while freeing up intellectual capital to be deployed elsewhere within an organization.

Handicapping (Pre-match)

Machine Learning offers dramatic improvements over industry standards in setting pre-match odds.

These benefits should all be viewed in the context of reducing human error while freeing up intellectual capital to be deployed elsewhere within an organization.

Handicapping (Pre-match)

Machine Learning offers dramatic improvements over industry standards in setting pre-match odds.

These benefits should all be viewed in the context of reducing human error while freeing up intellectual capital to be deployed elsewhere within an organization.

Handicapping (Pre-match)

Machine Learning offers dramatic improvements over industry standards in setting pre-match odds.

These benefits should all be viewed in the context of reducing human error while freeing up intellectual capital to be deployed elsewhere within an organization.

Handicapping (Pre-match)

Machine Learning offers dramatic improvements over industry standards in setting pre-match odds.

These benefits should all be viewed in the context of reducing human error while freeing up intellectual capital to be deployed elsewhere within an organization.

Handicapping (In-Play)

Pre-trained models combined with maximally efficient algorithms allow can be leveraged into competitive advantages.

Not only does Machine Learning increase short-term operator profitability, but it vastly improves the user experience, boosting customer retention.

Handicapping (In-Play)

Pre-trained models combined with maximally efficient algorithms allow can be leveraged into competitive advantages.

Not only does Machine Learning increase short-term operator profitability, but it vastly improves the user experience, boosting customer retention.

Handicapping (In-Play)

Pre-trained models combined with maximally efficient algorithms allow can be leveraged into competitive advantages.

Not only does Machine Learning increase short-term operator profitability, but it vastly improves the user experience, boosting customer retention.

Handicapping (In-Play)

Pre-trained models combined with maximally efficient algorithms allow can be leveraged into competitive advantages.

Not only does Machine Learning increase short-term operator profitability, but it vastly improves the user experience, boosting customer retention.

Handicapping (In-Play)

Pre-trained models combined with maximally efficient algorithms allow can be leveraged into competitive advantages.

Not only does Machine Learning increase short-term operator profitability, but it vastly improves the user experience, boosting customer retention.

Risk Management

(A) Real-Time Book Balancing

Efficient Suspension Implementation

Increased Turnover

 Capacity*Turnover: Total dollar amount of wagers accepted

Bet Recommendations

Bet Recommendations

F) FANDUEL	Home Lve	Promolions	Casino			
popliar		caswo Ne	Sucn			
(3) iv	Pbetfair	Black	ck, Roulette, S	\& more!		
(13) NBA				$\underline{4}$		
	Today's Pick:					
(6) val ($)$ odes Boost			Cete			

Promotion Type
Preference

Bet Recommendations

Bet Recommendations

Responsible Gaming

Enhanced pattern recognition will revolutionize an operator's ability to detect deviations from responsible gaming

Responsible Gaming

Enhanced pattern recognition will revolutionize an operator's ability to detect deviations from responsible gaming

Sustainable Gaming

Enhanced pattern recognition will revolutionize an operator's ability to detect deviations from responsible gaming

Sustainable Gaming

Enhanced pattern recognition will revolutionize an operator's ability to detect deviations from responsible gaming

Avg. Wager	$\$ 10.01$
	Wager StDev
	Bets/Week
	U Player Props
	Max. Bet

	Avg. Wager
	Wager StDev
	Bets/Week
	\% Player Props
	Max. Bet

Sustainable Gaming

Enhanced pattern recognition will revolutionize an operator's ability to detect deviations from responsible gaming

Avg. Wager	$\$ 10.01$	
	Wager StDev	$\$ 0.41$
	Bets/Week	$4.3(85 \%$ Baseball)
	\% Player Props	17%
	Max. Bet	$\$ 35.00$

	Avg. Wager
	Wager StDev
	Bets/Week
	\% Player Props
	Max. Bet

Sustainable Gaming

Enhanced pattern recognition will revolutionize an operator's ability to detect deviations from responsible gaming

Avg. Wager	$\$ 10.01$
Wager StDev	$\$ 0.41$
	Bets/Week
	$4.3(85 \%$

	Avg. Wager
	Wager StDev
	Bets $/$ Week
	\% Player Props
	Max. Bet

Sustainable Gaming

Enhanced pattern recognition will revolutionize an operator's ability to detect deviations from responsible gaming

Sustainable Gaming

Enhanced pattern recognition will revolutionize an operator's ability to detect deviations from responsible gaming

Fraud Detection

Use Case Summary

$\frac{+1=}{x \mid=}$ Handicapping

Risk Management

Responsible Gaming
(10n

Thank You

Office Hours: 1:15pm-2:00pm

Lloyd Danzig

SHARP RLPHA ROVISDRS

Economics: Sportsbook

Customers view odds set by sportsbook

NEW YORK KNICKS

Economics: Sportsbook

Customers view odds set by sportsbook
l

Team	Odds	Impl. Prob.
NYK	+190	34.48%
DET	-225	69.23%

Economics: Sportsbook

Customers view odds set by sportsbook
$+5.5$ (-110)

Team	Odds	Impl. Prob.	Fair Prob.	Sportsbook Profit
NYK	+190	34.48%	33.25%	$\$ 35.00$
DET	-225	69.23%	66.75%	$\$ 0.00$
		103.71%		

Economics: Sportsbook

Customers view odds set by sportsbook

Team	Odds	Impl. Prob.	Fair Prob.	Sportsbook Profit	Expected Profit
NYK	+190	34.48%	33.25%	$\$ 35.00$	$\$ 11.64$
DET	-225	69.23%	66.75%	$\$ 0.00$	$\$ 0.00$
		103.71%			$\$ 11.64$

Economics: Sportsbook

Customers view odds set by sportsbook

Team	Odds	Impl. Prob.	Fair Prob.	Sportsbook Profit	Expected Profit
NYK	+190	34.48%	33.25%	$\$ 35.00$	$\$ 11.64$
DET	-225	69.23%	66.75%	$\$ 0.00$	$\$ 0.00$
		$\mathbf{1 0 3 . 7 1 \%}$			$\$ 11.64$

Overround:

$103.71 \%-100.00 \%=3.71 \%$
Bookmaker will pay out
\$100.00 for every \$103.71
it collects

Economics: Sportsbook

Customers view odds set by sportsbook

Team	Odds	Impl. Prob.	Fair Prob.	Sportsbook Profit	Expected Profit
NYK	+190	34.48%	33.25%	$\$ 35.00$	$\$ 11.64$
DET	-225	69.23%	66.75%	$\$ 0.00$	$\$ 0.00$
		$\mathbf{1 0 3 . 7 1 \%}$			$\$ 11.64$

Overround:

103.71\% - 100.00\% = 3.71\%

Bookmaker will pay out
\$100.00 for every \$103.71 it collects

Profit Margin:
$\frac{\$ 3.71}{\$ 103.71}=3.58 \%$

Economics: Sportsbook

Customers view odds set by sportsbook

Team	Odds	Impl. Prob.	Fair Prob.	Sportsbook Profit	Expected Profit
NYK	+190	34.48%	33.25%	$\$ 35.00$	$\$ 11.64$
DET	-225	69.23%	66.75%	$\$ 0.00$	$\$ 0.00$
		$\mathbf{1 0 3 . 7 1 \%}$			$\$ 11.64$

Overround:	Profit Margin:	Expected Profit:
$103.71 \%-100.00 \%=3.71 \%$	$\$ 3.71$	
Bookmaker will pay out $\$ 100.00$ for every $\$ 103.71$ it collects	$\frac{\$ 103.71}{}=3.58 \%$	$\frac{\$ 11.64}{\$ 325.00}=3.58 \%$

Economics: Sportsbook

Economics: Betting Exchange

Alice thinks New York has a 33\% chance of winning, represented in fair odds as +203 . The best sportsbook is offering New York +190 , so Alice will prefer odds of +203 .

Economics: Betting Exchange

Alice thinks New York has a 33\% chance of winning, represented in fair odds as +203 .
The best sportsbook is offering New York +190 , so Alice will prefer odds of +203 .

She offers ("lays") to accept a wager from anyone interested in Detroit -203.
The best sportsbook is offering Detroit -225, so Bob accepts the other side of Alice's wager.

Economics: Betting Exchange

Alice thinks New York has a 33\% chance of winning, represented in fair odds as +203 .
The best sportsbook is offering New York +190 , so Alice will prefer odds of +203 .

She offers ("lays") to accept a wager from anyone interested in Detroit -203. The best sportsbook is offering Detroit -225, so Bob accepts the other side of Alice's wager.

Team	Fair Prob.	Winnings	Commission	Sportsbook Profit	Expected Profit
NYK	33.25%	$\$ 203$	5.00%	$\$ 10.15$	$\$ 3.37$
DET	66.75%	$\$ 100$	5.00%	$\$ 5.00$	$\$ 3.34$
					$\$ 6.71$

Economics: Betting Exchange

Alice thinks New York has a 33\% chance of winning, represented in fair odds as +203 .
The best sportsbook is offering New York +190 , so Alice will prefer odds of +203 .

She offers ("lays") to accept a wager from anyone interested in Detroit -203.
The best sportsbook is offering Detroit -225, so Bob accepts the other side of Alice's wager.

Team	Fair Prob.	Winnings	Commission	Sportsbook Profit	Expected Profit
NYK	33.25%	$\$ 203$	5.00%	$\$ 10.15$	$\$ 3.37$
DET	66.75%	$\$ 100$	5.00%	$\$ 5.00$	$\$ 3.34$
					$\$ 6.71$

Simulation:

Exchanges offer the benefit of being riskless to operate, since payouts to winners come from deposits by losers.
Favorable Odds
Operator Risk
Potential Market Variety
Reward/Bonus Programs
Bet to Lose
Bet Matching
Predictive Capacity
Max Profit (Operator)

Sportsbook Betting Exchange

	Sportsbook	Betting Exchange
Favorable Odds		
Operator Risk		
Potential Market Variety		
Reward/Bonus Programs		
Bet to Lose		
Bet Matching		
Predictive Capacity		
Max Profit (Operator)		

Liquidity remains the largest challenge.

Exchanges offer the benefit of being riskless to operate, since payouts to winners come from deposits by losers.

Liquidity remains the largest challenge.

Exchanges offer the benefit of being riskless to operate, since payouts to winners come from deposits by losers.

Liquidity remains the largest challenge.

Exchanges offer the benefit of being riskless to operate, since payouts to winners come from deposits by losers.

Liquidity remains the largest challenge.

Exchanges offer the benefit of being riskless to operate, since payouts to winners come from deposits by losers.

Liquidity remains the largest challenge.

Exchanges offer the benefit of being riskless to operate, since payouts to winners come from deposits by losers.

Liquidity remains the largest challenge.

Exchanges offer the benefit of being riskless to operate, since payouts to winners come from deposits by losers.

Liquidity remains the largest challenge.

Exchanges offer the benefit of being riskless to operate, since payouts to winners come from deposits by losers.

Liquidity remains the largest challenge.

Exchanges offer the benefit of being riskless to operate, since payouts to winners come from deposits by losers.

Liquidity remains the largest challenge.

