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We're a unit within Alphabet that builds technology
to make the world safer. Our team tackles a range
of global security issues including defending
against digital attacks, mitigating the rise of online
hate and harassment, countering online extremism,
and fighting censorship.
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Conversation—Al

Mission
Protect voices in conversation .

Our work
API, tools, and research Perspective



Problem

Abuse and toxicity
have led people to
give up on
conversations.




Problem

Voices People
are silenced are siloed

A A
A A

By optimizing for likes/shares platforms create filter

People stop expressing themselves and the bubbles so that people who disagree don't interact, or
loudest voices shout other out of the room . they shut down comments and discussion all together.
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Perspective

Perspective aims to
classify the emotional
impact of language.

Is this a rude, disrespectful, or unreasonable
comment that is likely to make you leave a
discussion?




How we work

Outputs

Data Collection <«— Annotation <= MLResearch <— Production APl <— UX, Tools, Integrations <— Direct user impact




How we work

Success Metrics

Participation Diversity Toxicity Action

Increase in the number of Increase diversity of voices in a Reduce the prevalence of toxic Increase in action against

voices in a discussion discussion comments online toxicity across ecosystem



How we work
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Community Topic Neutrality

® © @

Transparency Privacy Inclusivity



What we build

Experiences
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Moderation

Help community managers
set rules and review
comments faster.

fckyou

B Iwn

A Are you sure? The language in this comment might violate our community guidelines. You can edit the

ent or submit it for moderator review.

Authorship

Help people understand
the impact of what they
are writing.

192 characters remaining

o o W Tuiter

= EVoulube

. Noel Lillow  Today

" This is one of the most beautiful, and (REEAERAE

—s Keep it quiet

oo W Ry

View 9 replies v

.
Noel Lillow 1 week ago
1:24 Anyone n t the backup d
Orange Justice dance from fortnite #

PR

View 3 replies v

. Melisande Trousdale 2 weeks ago
Iwish | could o just one thing as Well wu v s s ez s

Readership

Help people discover the
conversations that interest
them.

Visual trends

Help creators build data
visualizations to better understand
conversations at scale.
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Transparency

Public Demo

Having an easy to use public
demo has enabled us to find and
fix problems




Transparency

Model Cards

A Model Card is a documentation framework
that outlines:

e  Evaluation results

e Intended usage

e Insight into training processes

The False Positive - Medium Blog
Conversation Al - Jigsaw

Model Report: Toxicity
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https://docs.google.com/presentation/d/1kFbmUCFtIR107q26iTbITWnlIlKPwyMYRSpy21fgV9k/edit#slide=id.p
https://medium.com/the-false-positive
https://medium.com/the-false-positive

Unintended Bias



Unintended bias

False "toxic" positives

A naively trained model will have some strong unintended biases
illustrated by these false-positive examples...

Comment Toxicity score
The Gay and Lesbian Film Festival starts today. 0.82
Being transgender is independent of sexual orientation.  0.52
A Muslim is someone who follows or practices Islam. 0.46



Unintended bias

Bias Mitigation

Bias caused by dataset imbalance
e Frequently attacked identities
are overrepresented in toxic
comments
e Length matters

Add assumed non-toxic data from

Wikipedia articles to fix the imbalance.

e Original dataset had 127,820
examples

e 4,620 non-toxic examples
added

Term
ALL

gay
queer
homosexual
black
white
wikipedia
atheist
lesbian
feminist
islam
muslim
race
news
daughter

5%
19%
0%
15%
4%
2%
7%
0%
0%
0%
0%
17%
6%
3%

Comment Length

20-59 60-179 180-539 540-1619 1620-4859
17%  12% 7% 5%
88% 77% 51%  30%
45%  56%
78% . 43%  16%
50% 30%  12% 8%
20% 24%  16%  12%
39% 20% 14% 1%
0% 20% 9% 6%
33% 50% 42%  21%
0% 20% 25% 0%
50% 43% 12%  12%
0% 25% 21%  12%
20% 25% 12%  10%
0% 1% 4% 3%
0% 7% 0% 7%

0%



Unintended bias

How can we measure unintended bias?

Definitions

e Unintended bias exists if the model performance varies across different subgroups

e Subgroups are the identities mentioned in the text (not the identities of the author or recipient)

Metrics

e Metrics should be threshold independent



Unintended bias

Measuring Overall Model Performance - AUC

How good is the model at distinguishing toxic from non-toxic examples? (ROC-AUC)

AUC (for a given test set) = Given two randomly chosen examples, one in-class (e.g. one is
toxic and the other is not), AUC is the probability that the model will give the in-class

example the higher score.
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Unintended bias

Measuring Overall Model Performance - AUC

How good is the model at distinguishing toxic from non-toxic examples? (ROC-AUC)

AUC (for a given test set) = Given two randomly chosen examples, one in-class (e.g. one is

toxic and the other is not), AUC is the probability that the model will give the in-class
example the higher score.
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Unintended bias

Subgroup AUC

Measures low subgroup
performance.

Detects if the model performs
worse on subgroup comments
than it does on comments

overall.

O H N W s T Y 0w

background

Toxic Comments

3 £

o H N W bE Oy 0w

subgroup . Non-toxic Comments

0.2 0.4 0.6 0.8

model_score



Unintended bias

Subgroup AUC

Measures low subgroup
performance.

Detects if the model performs
worse on subgroup comments
than it does on comments
overall.
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Unintended bias 10 . background
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Unintended bias

Background Positive
Subgroup Negative
(BPSN) AUC

Measures subgroup shifts to the
right

Detects if the model
systematically scores comments

from the subgroup higher.
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Unintended bias
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Unintended bias

Evaluation on synthetic data

Synthetic data shows real
improvement!

Comments are generated using
simple templates

text: "l am <identity>"
label: non-toxic

text: "I hate <identity>"
label: toxic
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Unintended bias

Public dataset for bias research

~2 million comments released by Civil Comments platform

Annotated for toxicity (all)
Is this a rude, disrespectful, or unreasonable comment that is likely to make you leave a discussion?

Annotated for identity content (~360k)
What genders are mentioned in this comment?
What races or ethnicities are mentioned in this comment?

etc...



Unintended bias

Evaluation on real data

Real data shows mixed results

TOXICITYe1

TOXICITY@6
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Unintended bias

Evaluation on real data - short comments only

TOXICITYe1 TOXICITY@6

The unintended bias was worse for " -10 ? % e -10
Short Comments. male 094 male 1 092 093 095

female 094 female

transgender 092 -09 transgender -09
Bias mitigation brought performance homosexual_gay_or_lesbian 098 homosexual_gay_or_lesbian
on short comments closer to overall christian 093 o=
performance, but bias still exists. i e il
muslim 094 muslim
atheist 0.96 atheist
black 095 black
white 094 white

asian 0.92 asian 06
latino 091 latino

psychiatric_or_mental_iliness 095 psychiatric_or_mental_iliness ; 084 |
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Kaggle Competition



Kaggle

Kaggle Competition

Featured Code Competition

Data
. . Jigsaw Unintended Bias in Toxicity Classification $65,000
2 million comments set from Civil Comments Detect toxicity across a diverse range of conversations R oney

{:\ Jigsaw/Conversation Al - 3,165 teams - 4 months ago

Evaluation
Generalized mean of three bias AUCs for all
identities and overall AUC

Overview Data Notebooks Discussion Leaderboard Rules

Overview
Results Description Can you help detect toxic comments — and minimize unintended model bias? That's your challenge in
this competition.
Evaluation
3k+ tea ms resea rChn‘]g b|as m|‘t|gat|on teChanueS . The Conversation Al team, a research initiative founded by Jigsaw and Google (both part of Alphabet),
Prizes builds technology to protect voices in conversation. A main area of focus is machine learning models that
W| nners used B E RT mode's and identity_awa re iisaling can identify toxicity in online conversations, where toxicity is defined as anything rude, disrespectful or
otherwise likely to make someone leave a discussion.
data Welg htlng FAQ Last year, in the Toxic Comment Classification Challenge, you built multi-headed models to recognize
Kernels toxicity and several subtypes of toxicity. This year's competition is a related challenge: building toxicity
Requirements models that operate fairly across a diverse range of conversations.

Here's the background: When the Conversation Al team first built toxicity models, they found that the



Questions?



