Augmented Programming

M
-

Q
et
-
(D
(D
=
ot
-

Q

Data Council New York City 2019
November 12, 2019

biaquoo|g

Gideon Mann
Head of Data Science
Office Qf the CTO

TechAtBloomberg.com

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top
of one peak, the water looked blue, with some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be
seen from the air without having to move too much to see them — they were so close they could touch
their horns.

While examining these bizarre creatures the scientists discovered that the creatures also
spoke some fairly regular English. Pérez stated, “We can see, for example, that they have a common
‘language,” something like a dialect or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals
were believed to be descendants of a lost race of people who lived there before the arrival of humans
in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures were created
when a human and a unicorn met each other in a time before human civilization. According to Pérez,
“In South America, such incidents seem to be quite common.”

However, Pérez also pointed out that it is likely that the only way of knowing for sure if
unicorns are indeed the descendants of a lost alien race is through DNA. “But they seem to be able to
communicate in English quite well, which I believe is a sign of evolution, or at least a change in
social organization,” said the scientist.

Old Faithful Geyser Eruptions

©
o

o
o

»
)
-+
-]
£
E
c
§e
)
Q.
-]
—
L
-—
%)
®
-
)
o
£
7))
)
£
I_
=
=

3
Duration (minutes)

\begin{tabular}
{|1l]clc|c|ec|c|c|} \hline
Sample & Limit & Range & γs

($h"{-1}$ Mpc) & & & &

ESOd
ESOm
UGCd
UGCm
ORSd
ORSm

&

R R R R R

\hline
\end{tabular}

80
80
80
80
80
80

&

R R R R R

R D NN

W RERr o Ul U1 B

20
20
32
32
40
25

\\

&

R 2 2 2
HRRRRBR

.48
.65
.48
.64
.57
.51

R R R R R R

A OO 0 N J

0o o Ul oo U1 N
2R R R R

$s 08 & γr & $r 03 \\ & ($h"{-1}$% Mpc) &

\\
\\
\\
\\
.07 \\
.26 \\

PR P N
re & s

Table Data Sets

Equation Data Set (im2latex-100k)

equations written in LaTeX
extracted from arXiv articles

)= —(da")" + (da')" + (dr" + r'ac)

Tables Data Set

(TABLE2LATEX-450K)
465,967 tables written in LaTeX

extracted from arXiv articles

Class in Fg Action on L{G) Action on L{G)
323’ 18 323,2’ 17
324’22’ { 324,23
03 82 6% 32,14 9% 82 64 3% 2,13
04.7,64,33,1 04,7,6%,3%,2
0% 5 0% 6
19,152 93 1 19,152,932

“High” level language

static int matchhere (char*, char*) ;
static int matchstar (int ¢, char *re, char *text) {

do {
if (matchhere (re, text))
return 1;
} while (*text != '\0' && (*text++ == c || c== "."));

return O;

static int matchhere(char *re, char *text) {

if (re[0] == '\O")
return O;
if (re[l] == '*')
return matchstar (re[0], re+2, text);
if (re[0] == '$'" && re[l]l=="\0")
return *text == '\0';
if (*text!='\0' && (re[0]l=='.' || re[0]==*text))

return matchhere (re+l, text+1);
return O;

int match(char *re, char *text) {

if (re[0] == '"1)

return matchhere (re+l, text);
do {

if (matchhere (re, text))

return 1;

} while (*text++ != '\0');
return O;

Programming by example: FlashFlli

John DOE 3 Data [TS]865-000-0000 - - 453442-00 06-23-2009
A FF MARILYN 30’'S 865-000-0030 4535871-00 07-07-2009
A GEDA-MARY 100MG 865-001-0020 - - 5941-00 06-23-2009

> ?22-272-227°7

SR
o & AT

Program Synthesis

Neural Turing Machine: Attach memory network to LSTM
(Graves et al 2014)

initialise: move head to start location

while input delimiter not seen do
receive input vector
write input to head location
increment head location by 1

end while

return head to start location

while true do
read output vector from head location

emit output
increment head location by 1
end while

R SR
S ;‘JI'S,:

Program Synthesis

Neural Program Interpreters: Fully supervised execution traces
(Reed & de Freitas 2016)

bubblesort (x) :
for (i=count-2;i>=0;i--) {
for(j=0;j<=1;j++) {
if (number [j] >number [j+11) {
temp=number [j];
number [j] =number [J+1] ;
number [j+1] =temp;

.. Trained on length 20 examples, works up to length 60 examples

Learning to Infer and Execute (3D Shape) Programs
(Tian et al 2019)

Infer shape Draw (“Top”, "“Circle”, position, geometry)

program s :

for(i < 2, “translation”, a)

for(j < 2, “translation”, b)
Draw (“Leg”, “Cub”, position + i*a + j*b, geometr
Execute shape < ! (g P 4 g y)

rogram . .
Prog for(i < 2, “translation”, c)

Draw (“Layer”, “Rec”, position + i*c, geometry)

Learning NN with black-box functions inside of them
(Jacovi et al 2019)

Training Inference
Deep network Deep network
. 2 N

NN to estimate

black box function black box function

Assembly Code (LLVM)

/* Simple regular expression matching. From: The Practice of Programming,
Brian W. Kernighan, Rob Pike */

static int matchhere (char*, char*) ;
static int matchstar (int ¢, char *re, char *text) {

do {
if (matchhere(re, text))
return 1;

} while (*text != '\0' && (*text++ == c || c== '."));

return O;

static int matchhere (char *re, char *text) {

if (re[0] == '\0'")
return O;
if (re[l] == '*')
return matchstar(re[0], re+2, text);
if (re[0] == '$' && re[l]=='\0")
return *text == '\0';
if (*text!="\0' && (re[0]l=='.' || rel[0]l==*text))
return matchhere (re+l, text+1l);
return O;

int match(char *re, char *text) {

if (re[0] == '"")
return matchhere(re+l, text);
do {
if (matchhere(re, text))
return 1;

} while (*text++ != '\0'); . . X
N . ‘ e * o . -
return 0; .t . PALEN e e
. .) . .2‘.‘ .:.~ .“ .{. p ‘ . -~ “\‘ .-“.:.
- ,,’ s\., .* J, P T8 i .Cz‘:\‘-‘f-'.',
S0 ' 'ﬂ 6 '\”F" '.':. x,{;iﬂ. S
. . . s S 3"::':«‘5‘” ’

Learning to super-optimize programs

(Bunel et al 2017)

Run Program and
Compute Latency

Sample
Rewrite

|

Program

Keep with
Probability

Improve Sampling
Distribution

Neural Decompilation
(Katz et al 2019)
How to recover initial code?

- Variable Names?
- While loops vs. GOTOs?

Approach A: use Neural Machine Translation

Approach B: use NMT to convert code into templates,
and then use insert/compile/test to fill in these templates

.
-:-- ."
% o -
- " .
. P R
., ta o e o .
. .1 3 ! . :
Cen T R R e e
- . MR CORE L L 154
.Y vee & "a.-‘.\{:f‘q’l
R £ - " T e e
.
BT G TP . L .

q*"" .;"l

PRV AL S

AR T I A B SR
AN et e

Bug Fixing

DeepFix (Gupta et al 2017)
Getafix (Bader et al 2019)

public class Worker {
public class Worker { private long getRuntime() {
public void doWork() { return now - start;
task.makeProgress(); }
3} public void doWork() {

public long getRuntime() { =7 if (task == null)
return now - start; return;
} task.makeProgress();

} b
)

Fuzzing

Given an arbitrary binary, discover the inputs
that cause program crashes

Discover the inputs that exercise as much
program behavior as possible

Ny

WA

- U sl 2
> &“. » s
Rl B

White-box vs. Black-box vs. Grey-box Fuzzing

« White-box: Assume lots of transparency (e.g., KLEE)
— Suffers from path explosion as programs get big

* Black-box: Assume no transparency into program
— Random generators (good for testing parsers)

* Grey-box: Minimal transparency into the program

Grey-Box Mutational Fuzzer: AFL

+ Mutate existing seed(s) to generate new test inputs
— Light instrumentation to check code paths
— Execute test input, add to set of seeds if new behavior

* AFLis beSt Of the bunCh! 1: // Core Algorithm for American Fuzzy Lop (AFL)
— Uses heuriStiCS to p|Ck inpUtS 2: // time: Fixed time window to fuzz (e.g. 24 hours)

3: // queue: Queue of inputs that exercise new code paths.

— Randomness for mutation 4: while time has not elapsed do

parent, enerqgy < pick_input(queue)
for i € range(energy) do
child « parent
for j € 1to sample_num_mutations() do

mutation <« sample _mutation()
site « sample mutation_site()
child <« apply_mutation(mutation, child, site)
end for
path « execute_path(child, code)
if (path is new) then queue « child
, end for
R 16: end while

AFL: Directly Instrument Code Binary

static int matchhere (char*,char*) ;
static int matchstar (int ¢, char *re, char *text) {

Parent process runs an instrumented child thread with do _{
. if__(matchhere(re. text))
a shared memory block. At every basic block:

return 1;

} while (*text != '\0' && (*text++ == c || c== '."));
return O;
}
cur location = <COMPILE TIME RANDOM>;
shared mem[cur location * prev location]++; St——w‘-—m—i;l‘zéﬁ]mi:"?}\‘of) tre. char *text) f
prev_location = cur location >> 1; return O;
if _(re[1] == 1*1')

return matchstar(re[0], re+2, text);
if _(ref0] == '$' && relll=="\0")

. return *text == '\0';
After each run, the parent inspects the shared memory if (*text!='\0' && (re[0]=='.' || re[0]==*text))
i hh (re+1, +1) ;
to see what code paths the child has traversed rezjz‘;”g;m""tc erelre+l, text

}

int match(char *re, char *text) {

if (ref0] == _'"1)
return matchhere (re+l, text);
do {
if (matchhere(re, text))
return 1;
...} .while (*text++ != '\0');

‘return 0;

AFL: Serious Bugs Found

IJG jpeg, libjpeg-turbo, libpng, libtiff, mozjpeg, PHP, Mozilla, Firefox, Internet Explorer,
Apple Safari, Adobe Flash / PCRE, sqglite, OpenSSL, LibreOffice, poppler, freetype, GnuTLS,
GnuPG, OpenSSH, PuTTY, ntpd, nginx, bash (post-Shellshock), tcpdump, JavaScriptCore, pdfium,
ffmpeg, libmatroska, libarchive, wireshark, ImageMagick, BIND, QEMU, lcms, Oracle
BerkeleyDB, Android / libstagefright, i0OS / ImageIO, FLAC audio library, libsndfile, less /
lesspipe, strings (+ related tools), file, dpkg, rcs, systemd-resolved, libyaml, Info-Zip
unzip, libtasnl, OpenBSD pfctl, NetBSD bpf, man & mandoc, IDA Pro [reported by authors]
clamav, libxml2, glibc, clang / llvm, nasm, ctags, mutt, procmail, fontconfig, pdksh, Qt,
wavpack, redis / lua-cmsgpack, taglib, privoxy, perl, libxmp, radare2, SleuthKit, fwknop
[reported by author], X.Org, exifprobe, jhead [?], capnproto, Xerces-C, metacam, djvulibre,
exiv, Linux btrfs, Knot DNS, curl, wpa supplicant, libde265 [reported by author], dnsmasqg,
libbpg, lame, libwmf, uudecode, MuPDF, imlib2, libraw, libbson, libsass, yara, W3C
tidy-html5, VLC, FreeBSD syscons, John the Ripper, screen, tmux, mosh, UPX, indent,
openjpeg, MMIX, OpenMPT, rxvt, dhcpcd, Mozilla NSS, Nettle, mbed TLS, Linux netlink, Linux
ext4, Linux xfs, botan, expat, Adobe Reader, libav, libical, OpenBSD kernel, collectd,
libidn, MatrixSSL, jasper, MaraDNS, w3m, Xen, OpenH232, irssi, cmark, OpenCV, Malheur,
gstreamer, Tor, gdk-pixbuf, audiofile, zstd, 1z4, stb, cJSON, libpcre, MySQL, gnulib,
openexr, libmad, ettercap, lrzip, freetds, Asterisk, ytnef, raptor, mpgl23, Apache, httpd,
exempi, libgmime, pev, Linux mem mgmt, sleuthkit, Mongoose OS, i0OS kernel

Approach 1: Treat AFL as a stochastic process

1: // Core Algorithm for American Fuzzy Lop (AFL)
2: // time: Fixed time window to fuzz (e.g. 24 hours)
3: // queue: Queue of inputs that exercise new code paths.
4: while time has not elapsed do)
parent. energy < plck Anput{aueus) AFL samples uniformly at random
for i € range(energy) do
child « parent
for j € 1to sample_num_m
mutation ample _mutation()
site « sample mutation_site()
child « apply_mutation(mutation, child, site)
end for
path « execute_path(child, code)
14: if (path is new) then queue « child
15: end for
16: end while

Why is this the right distribution?

» A
NIRRT

Thompson Sampling (aka Posterior Sampling)

Assume:

1. Likelihood function: P(T‘@, a, :1:)

2. Posterior: P(@‘D) X P(D‘Q)P(Q)

3. Take a sample: 0* ~Y P(Q‘D)

a* = argmax E|r|0*, a, x|
a

Thompson Sampling (aka Posterior Sampling)

a = mutation operator

Assume:

1. Likelihood function: P(T‘@, a, CIZ)

2. Posterior: P(@‘D) X P(" - 9)

3. Take a sample: 9* ~ P(Q ‘ D) ;i:dd;)izwis

queue element?

a* = argmax E|r|0*, a, x|
a

Thompson Sampling: Results

- We use the DARPA Cyber Grand

Challenge Binaries
— Set of 200 binaries released for testing bug
discovery + patching

CITATION

)
(o)
@©
—_
)
>
o

O
)

B

L
)

0

1.0 4

AFL

- = FidgetyAFL
- Empirical
| = Thompson

—_—

200

400 600 800 1000
Time in Minutes since Start

Relative Coverage over Time Across All Binaries

_—

1200

1400

Approach 2: Treat AFL as function learning

1: // Core Algorithm for American Fuzzy Lop (AFL)
2: // time: Fixed time window to fuzz (e.g. 24 hours)

3: // queue: Queue of inputs that exercise new code paths.
4: while time has not elapsed do

5: parent, enerqgy < pick_input(queue)

6 for i € range(energy) do
7: child « parent
8 for j € 1 to sample_num_mutations() do
9: mutation «— sample_mutation()
10: site « sample mutation_sitef
11: ' & on(mutation, child, site)
12: end for
path « execute_path(child, code)
14: if (path is new) then queue « child
15: end for
16: end while

Previously only optimized the new
child creation process. Is it possible
to build a model that assesses the
completed child itself?

» A
NIRRT

Function: Input strings -> Program paths

* For every input AFL executes, it stores the set of control flow graph edges

traversed

— Treat string input as x, set of edges as y

— Fit a model using a classifier of your choice —> just needs to output probabilities!
— Can update model online! After executing new inputs, train on resulting data!

* |n our work, we keep it simple:
— Featurizer: Bag of Bytes (0 - 255) for encoding input strings
— Classifier: Logistic Regression

Program Testing as Active Learning

- We have a (incomplete) model that maps inputs to a distribution over
control flow paths

« Use Entropy to rank candidates:

> P(y|z)logP(ylx)

Fuzzing by Modeling Program Behavior

a4 &

High Entropy —+——>»
Program

Execute Monitored by AFL

Prediction Entropy Medium B)

Inputs added to
Model Scorer Entropy

queue if they result
in increased code
coverage

Generated Inputs Low

Entropy g |

\
Discard -

Given input, predict distribution over
program paths, then compute score
(entropy of distribution).

Input Queue

Preliminary Experiments - Baselines

* Run AFL for 3 minutes to warm-start/populate queue
« Start the following 4 Strategies using the resulting queue:

1.
2.

o

AFL: Generates an input then immediately executes

Batch-AFL: Meant to mimic our program modeling procedure.
Generate 50,000 inputs, execute the first 5,000 (slightly different than
standard AFL due to the heuristic sampling seed inputs)

Random Batch-AFL: Generate 50,000 inputs, select random 5,000
ML/Logistic Regression: Generate 50,000, use model to pick 5,000

Results on 24 CGC Binaries

Relative Coverage over Executions for Program Flash_File System Relative Coverage over 50000 Executions for 24 Binaries

AFL AFL

Batch_AFL : Batch AFL

Random Random

ML . Bigram Logistic Regression

©
oo
1

©
(@]
1

o
o)
©
—
o
>
o)

O
o

=

=

S
[0

x

Relative Coverage

e
SN
1

0.4
10000 20000 30000 40000 50000 60000 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of Executions Number of Executions

CITATION

Conclusion

» Reinforcement Learning is a powerful way to replace heuristic decisions in
deployed infrastructure

 Black-box functions approximation is a key technique for understanding
and modeling programs

Larger Conclusion

Machine Learning on Programs is in its infancy
compared to progress in other domains

(1)
)

t - .

Thank you!

https://www.bloomberg.com/careers

':'-I'éc"h'Atéloomberg.com

© 2019 Bloomberg Finance L.P. All rights reserved.

=

 Bsaquioo|g

-
Q
—
-
(D
(D
|—§
=
>
Q

https://www.bloomberg.com/careers

