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Prediction-based decisions
Industry

lending
hiring
online advertising

Government

pretrial detention
child maltreatment screening
predicting lead poisoning
welfare eligibility
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Things to talk about
Choices to justify a prediction-based decision system

4 flavors of fairness definitions

Confusing terminology

“Conclusion”
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Choices to justify a prediction-based decision system
1. Choose a goal

Company: profits
Benevolent social planner: justice, welfare
Often goals conflict (Eubanks, 2018)
Assume progress is summarized by a number (“utility”): G
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2. Choose a population

Who are you making decisions about?

Is the mechanism of entry into this population unjust?
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3. Choose a decision space

Assume decisions are made at the individual level and are binary

di = lend or not
di = detain or not
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3. Choose a decision space

Assume decisions are made at the individual level and are binary

di = lend or not
di = detain or not

Less harmful interventions are often left out

longer-term, lower-interest loans
transportation to court, job opportunities
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4. Choose an outcome relevant to the decision
di = family intervention program or not

yi = child maltreatment or not

Shira Mitchell sam942@mail.harvard.edu @shiraamitchell



4. Choose an outcome relevant to the decision

di = family intervention program or not

yi = child maltreatment or not

Family 1: maltreatment with or without the program

Family 2: maltreatment without the program, but the program helps
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4. Choose an outcome relevant to the decision

di = family intervention program or not

yi = child maltreatment or not

Family 1: maltreatment with or without the program

Family 2: maltreatment without the program, but the program helps

Enroll Family 2 in the program, but Family 1 may need an
alternative

⇒ consider both potential outcomes: yi(0),yi(1)
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4. Choose an outcome relevant to the decision

Let yi(d) be the potential outcome under the whole decision system

Assume utility is a function of these and no other outcomes:
G(d) = γ(d, y(0), ..., y(1))

e.g. Kleinberg et al. (2018) evaluate admissions in terms of future
GPA, ignoring other outcomes
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5. Assume decisions can be evaluated
separately, symmetrically, and simultaneously

Separately

No interference: yi(d) = yi(di)
No consideration of group aggregates
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5. Assume decisions can be evaluated
separately, symmetrically, and simultaneously

Separately
Symmetrically

Identically
Harm of denying a loan to someone who can repay is equal across people
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5. Assume decisions can be evaluated
separately, symmetrically, and simultaneously

Separately

Symmetrically

Simultaneously

Dynamics don’t matter
(Harcourt, 2008; Hu and Chen, 2018; Hu et al., 2018; Milli et al., 2018)

Shira Mitchell sam942@mail.harvard.edu @shiraamitchell



5. Assume decisions can be evaluated
separately, symmetrically, and simultaneously

Separately

Symmetrically

Simultaneously

⇒

Gsss(d) ≡ 1

n

n∑
i=1

γsss(di,yi(0),yi(1))

= E[γsss(D, Y(0), Y(1))]
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6. Assume away one potential outcome

Predict crime if released: yi(0)
Assume no crime if detained: yi(1) = 0

Predict child abuse without intervention: yi(0)
Assume intervention helps: yi(1) = 0

But neither is obvious
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7. Choose the prediction setup

Let Y be the potential outcome to predict

Gsss(d) = E[γsss(D, Y)]

= E[gTPYD +gFP(1 − Y)D

+gFNY(1 −D) +gTN(1 − Y)(1 −D)]

Shira Mitchell sam942@mail.harvard.edu @shiraamitchell



7. Choose the prediction setup

Rearrange, drop terms without D:

Gsss,∗(d; c) ≡ E

[
YD−

gTN − gFP

gTP + gTN − gFP − gFN︸ ︷︷ ︸
≡c

D

]

maximizing Gsss,∗(d; 0.5)⇔ maximizing accuracy P[Y = D]
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7. Choose the prediction setup
Decisions must be functions of variables at decision time: D = δ(V)

Gsss,∗(δ; c) = E[Yδ(V) − cδ(V)] is maximized at

δ(v) = I(P[Y = 1|V = v] > c)

single-threshold rule
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7. Choose the prediction setup

Variable selection: P[Y = 1|V = v] changes with choice of V

Shira Mitchell sam942@mail.harvard.edu @shiraamitchell



7. Choose the prediction setup

Variable selection: P[Y = 1|V = v] changes with choice of V

Sampling:

sample to estimate P[Y = 1|V = v]

non-representative sample can lead to bias
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7. Choose the prediction setup

Variable selection: P[Y = 1|V = v] changes with choice of V

Sampling:

sample to estimate P[Y = 1|V = v]

non-representative sample can lead to bias

Measurement: e.g. Y is defined as crime, but measured as arrests
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7. Choose the prediction setup

Variable selection: P[Y = 1|V = v] changes with choice of V

Sampling:

sample to estimate P[Y = 1|V = v]

non-representative sample can lead to bias

Measurement: e.g. Y is defined as crime, but measured as arrests

Model selection: estimate of P[Y = 1|V = v] changes with choice of model
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What about fairness?
Consider an advantaged (A = a) and disadvantaged (A = a ′) group
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What about fairness?

Consider an advantaged (A = a) and disadvantaged (A = a ′) group

Under many assumptions, single-threshold rule maximizes utility per
group. Fair?

Disadvantaged group could have a lower maximum

Impacts of decisions may not be contained within groups
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What about fairness?

Consider an advantaged (A = a) and disadvantaged (A = a ′) group

Under many assumptions, single-threshold rule maximizes utility per
group. Fair?

Disadvantaged group could have a lower maximum

Impacts of decisions may not be contained within groups

People with the same estimates of P[Y = 1|V = v] are treated the
same. Fair?

Conditional probabilities change with variable selection

Estimates depend on sample, measurement, models
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What about fairness?

Consider an advantaged (A = a) and disadvantaged (A = a ′) group

Under many assumptions, single-threshold rule maximizes utility per
group. Fair?

Disadvantaged group could have a lower maximum

Impacts of decisions may not be contained within groups

People with the same estimates of P[Y = 1|V = v] are treated the
same. Fair?

Conditional probabilities change with variable selection

Estimates depend on sample, measurement, models

Hmm, instead treat people the same if their true Y is the same?
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Fairness flavor 1: equal prediction measures

Treat people the same if their true Y is the same:

Error rate balance (Chouldechova, 2017): D ⊥ A | Y
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Fairness flavor 2: equal decisions

Forget Y. Why?

Y is very poorly measured
decisions are more visible than error rates
(e.g. detention rates, lending rates)

Demographic parity: D ⊥ A
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Fairness flavor 2: equal decisions

Unawareness/blindness: δ(a, xi) = δ(a
′, xi) for all i
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Fairness flavor 3: metric fairness

Related: people who are similar in x must be treated similarly

More generally, a similarity metric can be aware of A:

Metric fairness (Dwork et al., 2012): for every v, v ′ ∈ V, their
similarity implies similarity in decisions |δ(v) − δ(v ′)| 6 m(v, v ′)
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Fairness flavor 3: metric fairness

How to define similarity m(v, v ′)...? Unclear.
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Fairness flavor 4: causal

Potential stuff again! a.k.a. counterfactuals

D(a) = decision if the person had their A set to a

Counterfactual Fairness: D(a) = D(a ′)
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Fairness flavor 4: causal
Instead of the total effect of A (e.g. race) on D (e.g. hiring),
maybe some causal pathways from A are considered fair?

Pearl (2009) defines causal graphs that encode conditional
independence for counterfactuals:
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Fairness flavor 4: causal

Zhang and Bareinboim (2018) decompose total disparity into
disparities from each type of path: direct, indirect, and back-door
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Fairness flavor 4: causal

ML fairness definitions consider paths from A (e.g. race) (Nabi and
Shpitser, 2018; Kilbertus et al., 2017)

But what about back-door paths that contribute to disparity?

Opinion: causal reasoning may be more useful to design
interventions than to define fairness
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Confusing terminology

Confusing:

P[Y = 1|V = v] is called an individual’s “true risk”

But we have not measured all relevant attributes of an individual

Instead:

individual i with measured variables vi
P[Y = 1|V = v] is a conditional probability
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Confusing terminology

“Biased data” collapses societal + statistical
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“Conclusion”

Neither maximizing a “utility function” (e.g. accuracy) nor
satisfying a “fairness constraint” (e.g. demographic parity)
guarantee social goals.

But while data and mathematical formalization are far from saviors,
they are not doomed to oppress. Purposeful alternatives are possible
(Potash et al., 2015; Fussell, 2018).
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Thank you!
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