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Artificial Intelligence in the 19 century & inference in the 20th

Galton: “regression tewards-edioerty’ Inference: Gosset 1908 to Fisher 1922

Father-son Height Data Tue widespread desire to introduce into statistical methods some
degree of critical exactitude has led to the employment, now
general in careful work, of the two types of quantity which charac-
terize modern statistics, namely, the “ probable error” and the
test of “ goodness of fit.” The test of goodness of fit was devised
by Pearson, to whose labours principally we now owe it, that the
test may readily be applied to a great variety of questions of
frequency distribution. It is an essential means of justifying
a posteriori the methods which have been employed in the reduction
of any body of data. Slutsky and Pearson have extended the
test to apply also to the fitness of regression formul®, Pearson’s
correlation ratio having also been employed for this purpose.

It has been shown in a previous communication [2 Fisher, 1922]
that the x2 test of goodness of fit can be accurately applied only
ii allowance is made for the number of constants fitted in recon-
structing the theoretical population. This correction is particularly
important in contingency tables, but is necessary in all cases; and
the fact that it has not been recognized has led to the adoption
o of erroneous values in almost all the cases in which tests of goodness
60 o5 7 7 of fit have been employed. The values of P have been exaggerated,

Height of father and it is to be feared that in many cases wrong conclusions have
been drawn from the values of P obtained.
Tt has, therefore, been necessary to extend the examination to
|mage credit: Faiyaz Hasan the tests of goodness of fit of regression lines. The errors due to

neglecting the number of constants fitted are here very pronounced ;
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One slide
hypothesis test
review

Sophisticated, high-dimensional Al:

multiple linear regression yz — /80 + ﬁlxlz + . e + /8pxpz _I_ e’l:

Goodness of fit: testing the whole model,

do assumptions fail? HO)] . ,8] — O

Testing individual regression coefficients

Tests should control type 1 error rate PHO J (reJeCt HO’]) S o

p-values: how often a null test statistic
would be as extreme as observed

P<|T| > tobs) for T~ tp,_1

(Bayesians: sorry this talk mostly doesn't fit with your philosophy but also you
should care about optional stopping and selection bias and HARKing and so on, so
hopefully you can still take something away from this)



> summary(lm(y ~ X, data = data.frame(x = rnorm(60), y = rnorm(60))))
Call:
Im(formula = y ~ x, data = data.frame(x = rnorm(60), y = rnorm(60)))
Residuals:

Min 1Q Median 3Q Max

-2.61407 -0.79391 0.02925 ©0.63878 2.41739
Coefficients:

Estimate Std. Error t value Pr(>I1tl)
(Intercept) -0.04443 0.13654 -0.325 0.746
X -0.07350 0.15269 -0.481 0.632
Residual standard error: 1.003 on 58 degrees of freedom

Multiple R-squared: 0.00398, Adjusted R-squared: -0.01319
F-statistic: 0.2317 on 1 and 58 DF, p-value: 0.632

Synthetic data: predictor and response have no
relationship

p-value for test of predictor coefficient: 0.632

Frequentism: repeat for many samples...

% of rejections at 5% level: 6%

> reject <- function(fitted_1m) summary(fitted_lm)$coefficients[2,4] < 0.05
> mean(replicate(1000, reject(lm(y ~ x, data = data.frame(x = rnorm(6@), y = rnorm(60))))))

[1] 0.06 7

™~

Hypothesis tests designed to control type 1 error rate



(Inference after) Model selection

Choose from a set of many candidate models Forward stepwise: greedy algorithm adding one

predictor at a time, supervised orthogonalization
Subset selection: choose subset of predictors

Lasso (Tibshirani, 1996)
Dimension reduction, sparse/parsimonious

model, interpretability i z":(y - ﬁTx,)Q ) zp: 8
o 1 1 7
1=1 j=1

Necessity: more predictors than observations,

e.g. PGS from GWAS
Like forward stepwise but less greedy. Shrinks

“Found” data, don’t know which predictors might coefficients toward 0, moreso for larger lambda

be useful--if any.
Both can find sparse models



candy <- fivethirtyeight::candy_rankings
head(candy[, c(1:2, 11:13)])

## # A tibble: 6 x 5
##  competitorname chocolate sugarpercent pricepercent winpercent

##  <chr> <lgl> <dbl> <dbl> <dbl>
## 1 100 Grand T 0.732 0.860 67.0
## 2 3 Musketeers T 0.604 0.511 67.6
## 3 One dime F 0.0110 0.116 32.3
## 4 One quarter E 0.0110 0.511 46.1
## 5 Air Heads F 0.906 0.511 52.3
## 6 Almond Joy T 0.465 0.767 50.3

chocolate, fruity, caramel,
peanutyalmondy, nougat,
_ _ . . crispedricewafer, hard, bar,
Candy data: which attributes predict popularity? pluribus, sugarpercent,

pricepercent



# Forward stepwise with AIC

model <- step(lm(winpercent ~ . - competitorname, candy),
k = 2, trace = 0)

# Significance tests for selected model

print (summary(model) $coefficients, digits = 2)

#it Estimate Std. Error t value Pr(>|t])
## (Intercept) 76 6.3 12.1 9.6e-20
## chocolateTRUE —18 % —2.3 2.26-02
## hardTRUE =16 8.1 2.0 5.3e=02
## barTRUE 12 8.8 1.4 1.7e-01
## pricepercent =~ 12.4 -2.2 3.0e-02

Stepwise chooses 4 predictors. Which are significant?



Replaced outcome
variable with pure noise
before running model
selection!

Still got “significant”
results?!



Top 5 predictors example

Histogram of selected
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Type 1 error: about 26% instead of 5%...

Largest out of 5 null effects

> maxz <- function(n) return(max(rnorm(n)))
> selected <- replicate(1000, maxz(5))

Various names / related concepts:
Winner’s curse
Overfitting

Selection bias



Test

. . distribution
AR(p) selection & goodness of fit .. when AICG
selects...
2 0.050 -
0.025 - correct
o ) order
. 0.000 - . . . :
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. R3L
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W3L
Select p with AlICc, test fit with Ljung-Box test
Blue line: null distribution. No power!



Anti-conservative significance tests

High type 1 error, many false discoveries

Conservative goodness of fit tests

High type 2 error, conditional on selecting
wrong model we can’t tell if it's wrong

How much does this really matter?



Reproducibility crisis

We conducted replications of 100 experimental and correlational studies
published in three psychology journals using high-powered designs and
original materials when available. . . . Thirty-six percent of replications had
significant results; 47% of original effect sizes were in the 95% confidence
interval of the replication effect size; 39% of effects were subjectively rated
to have replicated the original result

From: Estimating the reproducibility of psychological science (Open Science
Collaboration, 2015).

See also: Why most published research findings are false (loannidis, 2005).



Machine learning solution: data splitting

Data: 240 lymphoma patients, 7399 genes

Lasso penalized coxph model with gimnet:

train <- sample(nrow(x), 140)
x.train <- x[train,]
y.train <- Surv(y[train], status[train])
fit <- glmnet(x.train, y.train, family = "cox"
cv.fit <- cv.glmnet(x.train, y.train,
family = "cox"
coefs <- coef(fit, s = cv.fit$lambda.min)
active <- which(coefs != 0)
length(active)

## [1] 15 %

15 out of 7399 genes selected to predict survival time

Inference from an independent set of
test/validation data

test <- setdiff(l:nrow(x), train)
X.test <- x[test, activel

y.test <- Surv(y[test], status[test])
fit.test <- coxph(y.test ~ x.test)
fit.test

## Call: Valid!

## coxph(formula = y.test ~ x.test)
#i#

# coef exp(coef) se(coef)

## x.testl -0.2730 0.7611  0.2096 -1.
## x.test2 0.6954 2.0045 0.4394

## x.test3 0.1218 1.1295 0.3748 O.
## x.test4d -0.0145 0.9856  0.3038 -0.
## x.testb  0.0755 1.0784 0.1918 O.
## x.test6 -0.1430 0.8668 0.0648 -2.

1.

Z
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.193
114
. 745
.962
.694
.027



Data splitting...

Pros

Usually straightforward to apply
Usually doesn’t require assumptions

Works almost automatically in many settings

no free

Cons

Irreproducibility: can try many random splits
Inefficiency: doesn’t use all the available data

Infeasibility: data structure (dependence),
sample size bottlenecks (rare observations), etc
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Conditional approach

Motivated by selection bias rather than overfitting
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Motivation: screening/thresholding selection rule

Zs <- rnorm(10000)
screen <- Zs > 1
Zscreened <- Zs[screen]

From many independent effects, select those
that lie above some threshold

Histogram of Zscreened

If the (global) null is true, which probability law

would describe the selected effects? = &
. 7600/ (1-®(1))

An effect “surprises” us once to be selected, i B

but must surprise us again to be declared a 7

significant conditional on (after) selection .= \

g | B
Null distribution truncated at the threshold o(x)
In general: null distribution 3 L

0.0

conditional on selection . | - -



Selective type 1 error

Conduct tests that control conditional type 1
error criterion:

Py, g, (reject H | M=m)<a

where )/ is the selected model

and H is a null hypothesis about 12

Reduces to classical type 1 error definition if the
model is chosen a priori

Conditional control I:> marginal control

Data splitting controls this by using independent
data subsets to select the model and test
hypotheses

In general, need to work out how null distribution
of test statistic is affected by conditioning

Typically results in truncated distributions



EXACT POST-SELECTION INFERENCE, WITH APPLICATION

Lasso geometry

The event (set of outcomes) where
lasso selects a given subset of
variables is affine, a union of polytopes

Reduce to one polytope by
conditioning on the signs of selected
variables

For significance tests, statistics are
linear contrasts of the outcome

Reduce to one dimension by
conditioning on orthogonal component

TO THE LASSO

M = {1,3}
8= {+7 +}
{Ay < b}
X3
X1
X2
) V7 (2) V+(Z)
M=11.3
§={-,-} Test statistic

truncation region

Model selection event



> n <- 100; p <- 200; sparsity <- 5; beta <- rep(@, p); beta[l:sparsity] <- 1
> X <- matrix(rnorm(n*p), nrow=n); y <- x %*% beta + rnorm(n)

> fit <- lar(x, y, maxsteps = 20)

> larInf(fit, sigma = estimateSigma(x, y)$sigmahat, type = "aic", ntimes = 1)

Call:
larInf(obj
ntimes

fit, sigma = estimateSigma(x, y)$sigmahat, type = "aic",

1

Standard deviation of noise (specified or estimated) sigma = 0.969
Testing results at step = 6, with alpha = 0.100

Var  Coef Z-score P-value LowConfPt UpConfPt LowTailArea UpTailArea

5 0.926 8.858 0.123 -0.400 1.042 0.05 0.049
1 1.140 10.865 0.166 -1.950 10.063 0.05 0.050
2 0.931 9.112 0.008 0.639 8.521 0.05 0.050
4 0.832 8.405 0.570 -Inf 7.185 0.00 0.050
3 0.873 8.650 0.247 -2.206 5.898 0.05 0.050
188 -0.263 -2.528 ©0.459 -Inf Inf 0.00 0.000

Estimated stopgy/%:;lint from AIC rule = 6

4

Necessary reduction in power to control conditional type 1 error

R: selectivelnference

True model: coefficients 1-5 out
of p = 200, sample size n = 100

lar() algorithm fits the lasso path
AIC chooses model complexity

larIinf() computes conditional
inference, p-values and intervals

estimateSigma() uses
cross-validated lasso

(Some numerical instability with
intervals)



Coefficients

“Fixed lambda” lasso

1.0

0.8

0.6

0.4

0.2

0.0

Instead of AIC/CV

Least angle regression path

sigma <- estimateSigma(x, y)$sigmahat

beta = coef(fit, s=lambda, mode="lambda")
fixedLassoInf(x, y, beta, lambda, sigma = sigma)

VvV V VYV

Call:
fixedLassoInf(x = x, y = y, beta = beta, lambda = lambda, sigma = sigma)

Standard deviation of noise (specified or estimated) sigma = 0.983

° Testing results at lambda = 6.785, with alpha = 0.100
< Var Coef Z-score P-value LowConfPt UpConfPt LowTailArea UpTailArea
| 10.938 9.587 0 0.776 1.099 0.049 0.050
2 1.184 10.557 ) 0.999 1.370 0.049 0.049
31.051 9.567 ) 0.869 1.232 0.048 0.050
. 4 0.866 8.773 ) 0.702 1.031 0.048 0.048
51.205 12.344 0 1.043 1.368 0.048 0.048
] E Note: coefficients shown are partial regression coefficients
o Warning message:
~ In fixedLassoInf(x, y, beta, lambda, sigma = sigma) :
o Solution beta does not satisfy the KKT conditions (to in specified tolerances)
0 1 2 3 4 ] ) ) \”/>
y Target: projection of population mean onto X‘«[
norm ¥,

lambda <- 3*sqrt(log(p)) * sigma /\ — 3(’)‘. log(p)




More powerful post-selection inference,
with application to the Lasso

Keli Liu*!, Jelena Markovic'!, and Robert Tibshirani*!»?

Improving power

> ROSI(x, y, beta, lambda, dispersion = sigma)
Conditioning on more (signs, Calis
component of y orthogonal to test ROSI(X = x, y =y, soln = beta, lambda = lambda, dispersion = sigma)
contrast) reduces computation but also
reduces power Dispersion taken to be dispersion = 1.108
One strategy: condition on Testing results at lambda = 7.654, with level = 0.90
7 € M insteadof M =m Var Coef Z-score P-value LowConfPt UpConfPt
_ 0.01260 0.845 7.512 0 0.655 1.030
when testing ,31' =0 0.00988 0.868 8.733 0 0.702 1.031
0.01390 0.825 7.004 0 0.625 1.019
e More computation 0.01060 0.846 8.211 0 0.670 1.015
e More power B " -
Note: coefficients shown are full regression coefficients.

Target: projection of population mean onto X



Randomized model selection

The Annals of Statistics
2018, Vol. 46, No. 2, 679-710

Low power and computational instability Mol OGO
observed when the outcome variable is near the

bound ary of the truncated re g ion SELECTIVE INFERENCE WITH A RANDOMIZED RESPONSE

BY XIAOYING TIAN AND JONATHAN TAYLOR1
Another strategy: solve randomized model

selection problems, selection a given model no MAGIC: a general, powerful and tractable
longer implies hard constraints on the outcome method for selective inference
variable

Xiaoying Tian, Nan Bi and Jonathan Taylor*

> X = scale(x, TRUE, TRUE) / sqrt(n-1)

> rfit <- randomizedLasso(X, y, lam = lambda) g . .

> out <- randomizedLassoInf(rfit) Selective Sampllng after SOlVll’lg a

> outS$pvalues convex problem

1.Z345

20000 Xiaoying Tian Harris, Snigdha Panigrahi, Jelena Markovic, Nan Bi,

Jonathan Taylor

R package version not quite user friendly yet...



A = 30+/log(p)

| May have committed some light treason

Not really an affine
selection event...

P R e—

There's a good chance
estimateSigma() uses cross-validation | may have committedisome light treason:




The good news The bad news

Biometrika (2018), 105, 4, pp. 755-768 doi: 10.1093/biomet/asy045
Printed in Great Britain Advance Access publication 20 September 2018
Selective inference with unknown variance via the It's not in the R package...

square-root lasso

By XIAOYING TIAN

Farallon Capital Management LLC, One Maritime Plaza, 21st Floor, San Francisco,
California 94115, U.S.A.

xtian@faralloncapital.com

JOSHUA R. LOFTUS

Department of Information, Operations, and Management Sciences, New York University,
44 West Fourth Street, New York, New York 10012, U.S.A.

loftus@nyu.edu

AND JONATHAN E. TAYLOR

Department of Statistics, Stanford University, Sequoia Hall, 390 Serra Mall, Stanford,
California 94305, U.S.A.

jonathan.taylor@stanford.edu

2+ Al

arg min ||y — X3 1

Can pick lambda without using outcome variable



More good news

Can handle quadratic model selection events!
(my dissertation work)

Selective inference in regression models
with groups of variables

Joshua Loftus*! and Jonathan Taylor!

Selective inference after cross-validation

Joshua Loftus

More bad news

Conditioning on cross-validation selected models
is both computationally expensive and has low
power

Cross-validation not in the R package...

But! groupfs() and groupfsinf() functions allow
model selection respecting variable groupings,
e.g. levels of a categorical predictor



Conclusions



A few other approaches / R packages

SSLASSO - Spike and slab prior Bayesian approach

stabs - Stability selection, [re/sub]sampling and many cross-validation lasso paths, stable set
hdi - Stability selection and debiasing methods

EAinference - bootstrap inference for debiased estimators

PoSI - simultaneous inference guarantee over all possible submodels

Coming soon(?) to selectivelnference: goodness of fit tests. See also RPtests package for alternative.



Using data to decide which inferences to conduct results in selection bias
e Prediction error optimism (overfitting)
e Predictor significance (anti-conservative)
e (Goodness of fit (conservative)
Variety of new statistical tools accounting for such bias
Selective inference: probability model is conditioned on selection, classical
test statistics can then be compared to correspondingly truncated null
distributions

Try out the selectivelnference R package and let us know what you think!

https://github.com/selective-inference/



