Building a Scalable Financial Data Store

Liwei Mao
Nov 11, 2019

Button®



About me

A data engineering challenge
Mistakes we made

Our solution (5 data design choices)

Did we make it better?



About me

e BA Math & MA Stats from Columbia
e Started in B, transitioned to Data/Platform Eng.

e Team Lead at Button, building a mobile commerce
platform.

e Obsessed with Super Smash Bros, and classic
N64 controllers
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As Data Engineers

e On the hook to provide a “source of truth” for downstream consumers
e Data needs to be accurate, timely, and “easy to use”

e Tough when your users have different use case for the data
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A challenge for SSS data
e FEveryones reliant on financial data, but they all have different access patterns

Debugging + Observability

Customer
Performance = Bonus Support A Agg regate Performance
e (CSV Exports
r’ =fgheets e List Endpoints
REST endpoints e CRUD endeintS
Financial e Custom Analytics

Data

Marketing I

Performance by campaigns

Data
Science

Analytics
Finance

CSV exports
Invoices




Financial
Data Store

Enriched © —

Pub Sub

Orders Orders
Order Ingestion —P Order Processing —
Model API

Transaction Data store responsible for

o

o

o

Internal T¢
&
External API

Billing
Internal debugging

Downstream services
m  Reporting

m  Analytics Warehouse

Export API

Invoices
&
Financial Export

Reporting
Analytics




Mix of OLTP and OLAP access patterns

e OLTP (Online Transactional Processing)
m Every write to DB = S$ exchanging hands
m  No downtime, low latency writes
m Accuracy is crucial
e OLAP (Online Analytical Processing)
m  Monthly financial CSV exports & list endpoints
m Easy aggregation

m Slice and dice over arbitrary set of columns
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Mistake: Overwriting transactions with the latest state

CX sees 2 days later, he see

I Order Total $200 I Order Total $2000

What happened? ...CX can't tell because there's no history




CSV Exports

A B C A B €
1 OrderID Status Total 1 OrderlID Status Total
2 order-1  pending $250 2 order-1  adjusted 9135
3 order-2  pending $100 3 order-2  pending $100
4 4
5 5
6 $500,000,000 6 $350,000,000
Finance
Downloaded CSV file on Jan 1 Re-pulled export on Jan 5
: e Export looks different when it's downloaded on different days
L e Can't tell what changes were made?
- =

@ L e e  Exports take so long...
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Data Redesign

How should we redesign the data to better serve users?
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5 Data Design Choices

1. Immutable - Records are never changed, only inserted



Why Immutable?

e Biggest pain point
e Able to track changes over time (data lineage)

e Financial data should never be mutable
o useful for auditing
o state is reproducible at any point in time
o allows for correction in next accounting period



Immutable

Immutable event log

Date | Event Type | Total | Type
user books a hotel 2019-07-01 | Order Create | +$ 200 | Hotel booking
user extends to 10 nights 2019-07-03 | Order Adjust | +$ 1800 | Hotel extension
What CX observed was no fluke!
July 3rd

July 1st

Order Total $200 — I Order Total $2000



5 Data Design Choices

1. Immutable

2. Deltas for Easy Aggregation - represent amounts in “deltas”

@ Digiday, 2017



Use deltas for easy aggregation

Date | Event Type |
2019-07-01 | Order Create |
2019-07-01 | Order Adjust |

2019-07-01 | Order Delete |
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Deltas make aggregation faster & simpler

Before

After
purchase_date created_date dt, . -
sum(order_total) * 100 AS GMS, attribution_date,

sum( organization_type 'merchant’

e . sum(order_total) GMS,
sum( organization_type = 'publisher’

sum(merchant_commission),
lgf_ggio;::;{;’)u rchased_time) purchase_date, S UmipUbliS he r_commis s ionl

status,

commission_event
total,

row_number() over (partition BY id 1;

modified_time n
event_type ('order_finalize', 'order_delete')

event_type ('order_adjustment') 2 3
transaction

organization_type ('publisher',
'merchant')
(created_date %(start)s %(end)s))
row_num i
status 'declined’
1;
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Choice of “delta” vs “latest state”

Benefit of Delta
e [Easy aggregation
e Asingle service responsible for computing deltas
e “Atomic” - self contained description of the change
e Events can arrive out of order, and end state will be eventually

consistent
With Latest State

e Greater tolerance for missing events, later states will overwrite
incorrect earlier states



5 Data Design Choices

1.  Immutable
2. Deltas for Easy Aggregation - represent amounts in “deltas”

3. Denormalized - few tables, lots of dimensions

@ Digiday, 2017



Why Denormalized?

More OLAP use cases than OLTP.
OLAP use cases - large # of records

Marketing - Campaign analysis
Finance - Billing Exports & Invoices
Data team - Analytics

Partners - API for historical data

OLTP use cases - single record

e Customer Support - Debugging individual orders
e Inserting events



Hybrid Performance Approach

e Use Postgres DB
e Denormalized Data

Hybrid in the sense that data format is optimized for querying over historical time
ranges yet DB is a traditional OLTP database.



Denormalized Data

Previous Financial Data Store
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New Data Store - denormalized

commission_event
event_id
group_id
event_type group_id
order_i organization_id
partner_order_id organization_type
event_time transaction_type
purchase_time posting_time
finalize_time currency
previous_event_id amount
publisher_organization_i order_id
merchant_organization_id partner_order_id
currency purchase_time
order_count finalize_time
line_item_count order_count
order_amount line_item_count
publisher_commission order_amount
merchant_commission publisher_organization_id
source_token merchant_organization_id
source_token_created_time source_token
traffic_source source_token_created_time
campaign_i traffic_source
placement_id campaign_id
segment placement_id
experiment_id segment
experiment_variation experiment_id
pub_ref experiment_variation
publisher_thirdparty_id pub_ref
order_click_channel publisher_thirdparty_id
publisher_session_id order_click_channel
merchant_session_id publisher_session_id
country merchant_session_id
language country
os language
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posting_time
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latest_event_id
latest_event_time
transactions_created
created_at

modified_at
publisher_organization_id
merchant_organization_id

0s_version 0s

#5 export_job

type

status

options
export_file_path

requestor_organization_id
requestor

rows_exported
estimated_count
created_at

modified_at




CSV Exports are 8x taster!

Finance
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5 Data Design Choices

Immutable
Deltas for Easy Aggregation - represent amounts in “deltas”
Denormalized - few tables, lots of dimensions

Separate record keeping for billing

Digiday, 2017



Why keep separate records for billing?

EVENT-XXX------=
EVENt-XXX--------

Feb Invoice

event-xxx
event-xxx
event-xxx
event-xxx
event-xxx
event-xxx

Need stable tracking of which events
fit into each invoice
Enable later adjustments

Allow changes in billing logic
o may bill on events vs orders
o may bill per customer vs per order
o  may bill weekly vs monthly



Keep separate records for billing

Immutable Event Log
If a user makes an order of $100, and later makes a partial return of $50. Product/Service rendered

Billing Date | Order ID | Event Date | Event Type | GMS

Marketing / Sales / Customer

l
2018-02-02 | orderl | 2018-01-02 | ORDER_CREATE | 100 Support
2018-02-02 | orderl | 2018-01-02 | ORDER_ADJUST | -50
2018-03-062 | order2 | 2018-02-01 | ORDER_CREATE | 30

Financial Transaction (Feb-2018)

Financial Tx export for the publisher contains the total GMS/Publisher Commission for orders that
gets billed in Feb. ..
Invoicing
Billing Date | Order ID | GMS
2018-02-62 | orderl | 50 Billing Department
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5 Data Design Choices

Immutable

Deltas for easy aggregation
Denormalized

Separate record keeping for billing

Self Heal - programmatic detection & adjustment

Digiday, 2017



Self-Heal - programmatic detection & adjustment

e Immutable data helps with this
e So does having separate records for billing
e Limiting points of failure

Example:

e Orders that were processed “late”, that didn’t make it into the last billing cycle, should
be automatically added to the next cycle

e Automatic checks of billing records (immutable) against order event records (also
immutable)



What we've learned...
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Stable ID & Ordering

e Ordering (seqn) and Event ID should be set as upstream as possible in the order pipeline, and
carried all the way downstream.

e Good for debugging

Enriched -
Orders Orders Financial
Order Ingestion — Order Processing —_— Data Store

Model API Export API

Internal Tox Invoices
& &
External API Financial Export

—_— Reporting
Pub Sub Analytics




Quirks of Financial Data

e Dates really matter. And there are a lot of them

e Sample Dates:

@)

@)

@)

@)

@)

Order Purchase Date - Original Time of purchase

Order Ingestion Date - First order event seen. When order is “created” in your system
Order Event Ingestion Date - When order event is ingested

Order Finalize Date - After which order can no longer be modified

Billing Date - When the event/order is invoiced

e (Changing, or adding dates later is expensive - it changes how you aggregate

e Avoid floats

e Double-Entry doesn't matter

@)

More applicable for days of paper ledger and manual entries



Rebuild Process...
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Learnings from the migration process

e Validate by comparing the full dataset
e Anticipate performance optimizations to account for immutability

e Backfilling even a single field can be painful. Include all the fields you can from the
get-go

e Have arollback strategy if things go south



What did we improve?
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CSV Exports are 8x faster
CX team can view history of how an order is commissioned and adjusted

Aggregation is simpler for data scientists, Excel users, and streaming aggregation
jobs

Data lineage via immutability enabled programmatic detection and correction



Extensions

What may change in the future?

Analytics - additional dimensions

Sales team - different pricing models, more billable events (not just orders)
Updates to billing

Performance - Explore alternative storage engines



Questions?
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How Button Works

Order
Publishers Merchants /
user books a hotel

....... , ,
4. .................. 4. ..................

SX.XX $§12

Commission Commission
Earned Owed

(transaction) (transaction)



