

● About me

●

●

●

●

●

●

●

●

●

● A data engineering challenge

●

●

●

●

●

●
○

●
●
●
●
●

●

● Transaction Data store responsible for

○ Billing

○ Internal debugging

○ Downstream services

■ Reporting

■ Analytics Warehouse

● OLTP (Online Transactional Processing)

■ Every write to DB = $$ exchanging hands

■ No downtime, low latency writes

■ Accuracy is crucial

● OLAP (Online Analytical Processing)

■ Monthly financial CSV exports & list endpoints

■ Easy aggregation

■ Slice and dice over arbitrary set of columns

●

●

● Mistakes we made

●

●

CX sees 2 days later, he see

Downloaded CSV file on Jan 1 Re-pulled export on Jan 5

CSV Exports

●

●

●

●

●

●

● Our solution

●

1. Immutable - Records are never changed, only inserted

Why Immutable?
● Biggest pain point
● Able to track changes over time (data lineage)
● Financial data should never be mutable

○ useful for auditing
○ state is reproducible at any point in time
○ allows for correction in next accounting period

Immutable event log

What CX observed was no fluke!

July 1st July 3rd

Digiday, 2017

1. Immutable

2. Deltas for Easy Aggregation - represent amounts in “deltas”

Before After

See total commissions by day

microsoft excel stock image

Benefit of Delta

● Easy aggregation
● A single service responsible for computing deltas
● “Atomic” - self contained description of the change
● Events can arrive out of order, and end state will be eventually

consistent

With Latest State

● Greater tolerance for missing events, later states will overwrite
incorrect earlier states

Digiday, 2017

1. Immutable

2. Deltas for Easy Aggregation - represent amounts in “deltas”

3. Denormalized - few tables, lots of dimensions

More OLAP use cases than OLTP.

OLAP use cases - large # of records

● Marketing - Campaign analysis
● Finance - Billing Exports & Invoices
● Data team - Analytics
● Partners - API for historical data

OLTP use cases - single record

● Customer Support - Debugging individual orders
● Inserting events

Why Denormalized?

Hybrid Performance Approach
● Use Postgres DB
● Denormalized Data

Hybrid in the sense that data format is optimized for querying over historical time
ranges yet DB is a traditional OLTP database.

For faster performance with CSV Exports and aggregations

Previous Financial Data Store New Data Store - denormalized

Digiday, 2017

1. Immutable

2. Deltas for Easy Aggregation - represent amounts in “deltas”

3. Denormalized - few tables, lots of dimensions

4. Separate record keeping for billing

Why keep separate records for billing?

● Need stable tracking of which events
fit into each invoice

● Enable later adjustments
● Allow changes in billing logic

○ may bill on events vs orders
○ may bill per customer vs per order
○ may bill weekly vs monthly

Product/Service rendered

Invoicing

Immutable Event Log

Digiday, 2017

1. Immutable

2. Deltas for easy aggregation

3. Denormalized

4. Separate record keeping for billing

5. Self Heal - programmatic detection & adjustment

Self-Heal - programmatic detection & adjustment

● Immutable data helps with this
● So does having separate records for billing
● Limiting points of failure

Example:

● Orders that were processed “late”, that didn’t make it into the last billing cycle, should
be automatically added to the next cycle

● Automatic checks of billing records (immutable) against order event records (also
immutable)

Use stable ID & ordering throughout your procession pipeline

● Ordering (seqn) and Event ID should be set as upstream as possible in the order pipeline, and
carried all the way downstream.

● Good for debugging

● Dates really matter.

●

○

○

○

○

○

●

● Avoid floats

● Double-Entry doesn’t matter

○

●

●

●

●

●

●

●

●

●
●
●
●

