Building a Scalable Financial Data Store

Liwei Mao
Nov 11, 2019

Button®

About me

A data engineering challenge
Mistakes we made

Our solution (5 data design choices)

Did we make it better?

About me

e BA Math & MA Stats from Columbia
e Started in B, transitioned to Data/Platform Eng.

e Team Lead at Button, building a mobile commerce
platform.

e Obsessed with Super Smash Bros, and classic
N64 controllers

Button®

About me

A data engineering challenge
Mistakes we made

Our solution (5 data design choices)

Did we make it better?

As Data Engineers

e On the hook to provide a “source of truth” for downstream consumers
e Data needs to be accurate, timely, and “easy to use”

e Tough when your users have different use case for the data

Button®

A challenge for SSS data
e FEveryones reliant on financial data, but they all have different access patterns

Debugging + Observability

Customer
Performance = Bonus Support A Agg regate Performance
e (CSV Exports
r’ =fgheets e List Endpoints
REST endpoints e CRUD endeintS
Financial e Custom Analytics

Data

Marketing I

Performance by campaigns

Data
Science

Analytics
Finance

CSV exports
Invoices

Financial
Data Store

Enriched © —

Pub Sub

Orders Orders
Order Ingestion —P Order Processing —
Model API

Transaction Data store responsible for

o

o

o

Internal T¢
&
External API

Billing
Internal debugging

Downstream services
m Reporting

m Analytics Warehouse

Export API

Invoices
&
Financial Export

Reporting
Analytics

Mix of OLTP and OLAP access patterns

e OLTP (Online Transactional Processing)
m Every write to DB = S$ exchanging hands
m No downtime, low latency writes
m Accuracy is crucial
e OLAP (Online Analytical Processing)
m Monthly financial CSV exports & list endpoints
m Easy aggregation

m Slice and dice over arbitrary set of columns

Button®

About me

A data engineering challenge
Mistakes we made

Our solution

Did we make it better?

Mistake: Overwriting transactions with the latest state

CX sees 2 days later, he see

I Order Total $200 I Order Total $2000

What happened? ...CX can't tell because there's no history

CSV Exports

A B C A B €
1 OrderID Status Total 1 OrderlID Status Total
2 order-1 pending $250 2 order-1 adjusted 9135
3 order-2 pending $100 3 order-2 pending $100
4 4
5 5
6 $500,000,000 6 $350,000,000
Finance
Downloaded CSV file on Jan 1 Re-pulled export on Jan 5
: e Export looks different when it's downloaded on different days
L e Can't tell what changes were made?
- =

@ L e e Exports take so long...

About me

A data engineering challenge
Mistakes we made

Our solution (5 data design choices)

Did we make it better?

Data Redesign

How should we redesign the data to better serve users?

Button®

5 Data Design Choices

1. Immutable - Records are never changed, only inserted

Why Immutable?

e Biggest pain point
e Able to track changes over time (data lineage)

e Financial data should never be mutable
o useful for auditing
o state is reproducible at any point in time
o allows for correction in next accounting period

Immutable

Immutable event log

Date | Event Type | Total | Type
user books a hotel 2019-07-01 | Order Create | +$ 200 | Hotel booking
user extends to 10 nights 2019-07-03 | Order Adjust | +$ 1800 | Hotel extension
What CX observed was no fluke!
July 3rd

July 1st

Order Total $200 — I Order Total $2000

5 Data Design Choices

1. Immutable

2. Deltas for Easy Aggregation - represent amounts in “deltas”

@ Digiday, 2017

Use deltas for easy aggregation

Date | Event Type |
2019-07-01 | Order Create |
2019-07-01 | Order Adjust |

2019-07-01 | Order Delete |

Button®

Deltas make aggregation faster & simpler

Before

After
purchase_date created_date dt, . -
sum(order_total) * 100 AS GMS, attribution_date,

sum(organization_type 'merchant’

e . sum(order_total) GMS,
sum(organization_type = 'publisher’

sum(merchant_commission),
lgf_ggio;::;{;’)u rchased_time) purchase_date, S UmipUbliS he r_commis s ionl

status,

commission_event
total,

row_number() over (partition BY id 1;

modified_time n
event_type ('order_finalize', 'order_delete')

event_type ('order_adjustment') 2 3
transaction

organization_type ('publisher',
'merchant')
(created_date %(start)s %(end)s))
row_num i
status 'declined’
1;

Your Marketing & Finance folks will appreciate it

Monthly Budget.dsx - Last Saved 12/1/2018 2:30 PM ~

File Home nsert Draw Page Layout Formulas Data Review Vie Add-ins Help Power Pivot O Search

I;:m Calibri 11 AN = - Bwnp Text ra S 1 @ @ ‘Eg 5
JCopy ~ "
e 1y-@E-4a- er | $ % 9 W

S Format Painter & =
Alignment 3 Number x Styles 4

onal Formatas Cell Insert D

= == EMege &G
&8 atting © Table - Styles~ -

Clipboard

=2 S

Categories
Other

Rent and
Utitbes.
3%

& st

Equpment

2010 201 2012 2013 2014
s 17628 $ 16368 $ 1885 § 19,020 $ 17,760 §
S 3972 § 3588 § 4025 S 3875 § 3756" §
H 5424 S 5784" § 5883° § 5892 § 5304 $
$ 555 § 5700 $ 5438" § 5844 6324 §
s 1104 § 6% $ 1595 § 492 3 1,260 §
s 6672 § 6732 $ 702 § 6504 $ 6804 §
s 272 § 3720 § 2847 255 $ 2568 §
$ 43,080 $ 42588 S 28,705" § 44183 § 43776 §

Choice of “delta” vs “latest state”

Benefit of Delta
e [Easy aggregation
e Asingle service responsible for computing deltas
e “Atomic” - self contained description of the change
e Events can arrive out of order, and end state will be eventually

consistent
With Latest State

e Greater tolerance for missing events, later states will overwrite
incorrect earlier states

5 Data Design Choices

1. Immutable
2. Deltas for Easy Aggregation - represent amounts in “deltas”

3. Denormalized - few tables, lots of dimensions

@ Digiday, 2017

Why Denormalized?

More OLAP use cases than OLTP.
OLAP use cases - large # of records

Marketing - Campaign analysis
Finance - Billing Exports & Invoices
Data team - Analytics

Partners - API for historical data

OLTP use cases - single record

e Customer Support - Debugging individual orders
e Inserting events

Hybrid Performance Approach

e Use Postgres DB
e Denormalized Data

Hybrid in the sense that data format is optimized for querying over historical time
ranges yet DB is a traditional OLTP database.

Denormalized Data

Previous Financial Data Store

] core_transactionadjustmentjob ¥

bad._termsheet i BIGINT(20)
 goon termsheet_id BIGINTI20)

il
| 1 Ao &l
] django_migrations v] core_eventstreamitem v
E) antan
app VARCHAR(25S) crentea_date DATETIVE
name VARCHAR(255) mosiied_sate DATETIME
appled DATETIVE vontid BGINT(20)
> > ot tom. i NT(11)
> previous_tem 1 INT(11)
———

>

] core_eventstream
@ INT(1)
created_date DATETIVE
morified_date DATETIME

atribution_ioken 14 BIGINT(20)

@ dla_la NT(11)

+
|
|
|
1
|
1

i€

| |
] core_remotenotification ¥

Nt
croated_date DATETIVE
modfied_ dato DATETIME
data LONGTEXT.
destinaion VARCHAR(2)
organization VARCHAR126)

v] core_conversiontransactionmap v
cested_cate OATETIIE
mocited st DATETIME
9 BiGNTE0)
| conversion_d BIGINT(20)
 vansacion 1 BIGNTz0)
> >

"] core_event
created_cate DATETIVE.
moified_date DATETIME

,,,,, g BiGINTE20)

when_notced DATETIME

sourcs VARCHAR(22)

dsta LONGTEXT
conversiona BIGINT(20)

advertsing_1d VARCHAR(

I | souee state iamain)

when_cecurred DATETIVE

ovent. typo VARCHAR(S2)

atrbutin_token_d BIGINT(20)

I
|
|
|
|
|
! pariner_order_id VARCHAR(256)
L >
v

> | core_streamdfamapping ¥
T
createc_cate DATETIVE
modiied_dato DATETIME
error_message VARCHAR(s:)

o tom_la INT(11)

@ stato_id INT(11)

A

128)

] core_attributiontoken <
created_date DATETIVE
modiied_date DATETIME
(4 BIGINT(20)
source. oken VARCHAR(64)
recipient_crganization VARCHAR(64)

@ target_state_id INT(11) i

sudisnce
audence_ihidparty_id VARCHAR(255)
placement VARCHAR(54)
recpion_session VARCHAR(54)
campaign VARCHAR(64)

pub_rof VARCHAR(S12)

| i | %
T core_tedgerbackfil ¥ ety ClE v
reten_cate DATETIVE e date DATETIVE e date CATETIVE P I ann
diod dao DATETHIE mdiiod daio DATETIIE motios daio DATETHIE retod dao DATETIVE retod cata DATETIVE
BNz mdiod dao DATETIE 1< > mediiod dao DATETME
comersion 4 VARCHARS) Tacion crganization VARCHAR(SN (4 —| | conerian e VARCHARGE)
‘done TINYINT(1) | atribution_seconds INT(11) 1 @ dfa_id INT(11)
avni_saia LONGTEX tectve_end.dte DATETINE >
S | tetve_san st DATETIE —
orer 1 VARGHARIG2) Is_ceeted TNYINT(T) Eaas
T I I
1! 1 i
; i
T P 2 Ed Eara
|) 1 | !
L4 | 1 Lipd 4L
] core_transaction v] core_transactionexportjob v] core_termsheet v] core_conversion »] core_transactionsnapshot v
reton dato DATETIVE e dao DATETIVE reted dao DATETIVE reton dato DATETIVE retod_cato DATETIVE o cato DATETIVE
asianTzn) asienzo) asianzo) iaTo o amaNTE) o asiazn
ameunt BGNT0) reciont. name VARCHAR(S4) »camarson e VARCHAR(2) adaeng WT(11)
currency VARCHAR(S) sudience_organization VARCHAR(64) | 115 tart_cate DATETIVE status VARGHAR(32) previous_comversion,id BIGINT(20) o manionTE)

converson_d BIOINTI20)
 fom_account_d BIGINT20) comverson_type VARCHAR(32)
postig_nie_id BIGINT(20) curtency VARCHAR(S)
> previous.x id BIGINT(20) — 011 data LONGTEXT
to_account id BIGINT(20) trom_account id BIGINT(20)
status VARCHAR(32) 1| to_account ia BiaINT20)
validated_date DATETIME } effective_end_
ate_card_id BIGINT(20) — L — | efeciv_star_date DATETIME
I
1
1
i

Pr_fype VARCHAR(S2)

e DATETIVE

event_catogory VARCHAR(32) campaign VARCHAR(6)

morchant organizaton VARCHAR(64) 1s_oollod TINYINT(1)

order_toal BIGINTI20) i fankINT(T)

pubishor_organizaion VARCHAR(64) redompton_count INT(11)
>

end_date DATETIME
status VARGHAR(32)

©xpor_flo_path VARCHAR(255)

data LONGTEXT.
sourcs VARCHARI32)

pubiser_organization VARCHAR(64)
| merchant_organizaton VARCHAR(64)
ofectve._stan_date DATETIME
eftective_and_cate DATETIVE.
endad date DATETIME

is_deeted TINVINT(T)

cancelied_sats DATETIVE.

Is_defaul TINYINT(1)

status VARGHAR(32)
curtency VARCHAR(S)
converson_ I BIGINTI20)

> posting. e id BIGINT(20)

& ansacton id BIGINT(20)

New Data Store - denormalized

commission_event
event_id
group_id
event_type group_id
order_i organization_id
partner_order_id organization_type
event_time transaction_type
purchase_time posting_time
finalize_time currency
previous_event_id amount
publisher_organization_i order_id
merchant_organization_id partner_order_id
currency purchase_time
order_count finalize_time
line_item_count order_count
order_amount line_item_count
publisher_commission order_amount
merchant_commission publisher_organization_id
source_token merchant_organization_id
source_token_created_time source_token
traffic_source source_token_created_time
campaign_i traffic_source
placement_id campaign_id
segment placement_id
experiment_id segment
experiment_variation experiment_id
pub_ref experiment_variation
publisher_thirdparty_id pub_ref
order_click_channel publisher_thirdparty_id
publisher_session_id order_click_channel
merchant_session_id publisher_session_id
country merchant_session_id
language country
os language

financial_transaction

finalize_time
posting_time

status

latest_event_id
latest_event_time
transactions_created
created_at

modified_at
publisher_organization_id
merchant_organization_id

0s_version 0s

#5 export_job

type

status

options
export_file_path

requestor_organization_id
requestor

rows_exported
estimated_count
created_at

modified_at

CSV Exports are 8x taster!

Finance

Button®

h 0D =

5 Data Design Choices

Immutable
Deltas for Easy Aggregation - represent amounts in “deltas”
Denormalized - few tables, lots of dimensions

Separate record keeping for billing

Digiday, 2017

Why keep separate records for billing?

EVENT-XXX------=
EVENt-XXX--------

Feb Invoice

event-xxx
event-xxx
event-xxx
event-xxx
event-xxx
event-xxx

Need stable tracking of which events
fit into each invoice
Enable later adjustments

Allow changes in billing logic
o may bill on events vs orders
o may bill per customer vs per order
o may bill weekly vs monthly

Keep separate records for billing

Immutable Event Log
If a user makes an order of $100, and later makes a partial return of $50. Product/Service rendered

Billing Date | Order ID | Event Date | Event Type | GMS

Marketing / Sales / Customer

l
2018-02-02 | orderl | 2018-01-02 | ORDER_CREATE | 100 Support
2018-02-02 | orderl | 2018-01-02 | ORDER_ADJUST | -50
2018-03-062 | order2 | 2018-02-01 | ORDER_CREATE | 30

Financial Transaction (Feb-2018)

Financial Tx export for the publisher contains the total GMS/Publisher Commission for orders that
gets billed in Feb. ..
Invoicing
Billing Date | Order ID | GMS
2018-02-62 | orderl | 50 Billing Department

a &~ L b -~

5 Data Design Choices

Immutable

Deltas for easy aggregation
Denormalized

Separate record keeping for billing

Self Heal - programmatic detection & adjustment

Digiday, 2017

Self-Heal - programmatic detection & adjustment

e Immutable data helps with this
e So does having separate records for billing
e Limiting points of failure

Example:

e Orders that were processed “late”, that didn’t make it into the last billing cycle, should
be automatically added to the next cycle

e Automatic checks of billing records (immutable) against order event records (also
immutable)

What we've learned...

Button®

Stable ID & Ordering

e Ordering (seqn) and Event ID should be set as upstream as possible in the order pipeline, and
carried all the way downstream.

e Good for debugging

Enriched -
Orders Orders Financial
Order Ingestion — Order Processing —_— Data Store

Model API Export API

Internal Tox Invoices
& &
External API Financial Export

—_— Reporting
Pub Sub Analytics

Quirks of Financial Data

e Dates really matter. And there are a lot of them

e Sample Dates:

@)

@)

@)

@)

@)

Order Purchase Date - Original Time of purchase

Order Ingestion Date - First order event seen. When order is “created” in your system
Order Event Ingestion Date - When order event is ingested

Order Finalize Date - After which order can no longer be modified

Billing Date - When the event/order is invoiced

e (Changing, or adding dates later is expensive - it changes how you aggregate

e Avoid floats

e Double-Entry doesn't matter

@)

More applicable for days of paper ledger and manual entries

Rebuild Process...

Button®

Direct
Merchants

OAK

Source of Truth

A1
<Order API
e N

Order Events w/
Derived Latest Order State

Orders

Comstore

Comstore
Finalization Worker

order-finalize

avents
1
'
¥
order-create 3 Sas
order-adjust

order-delete

internal Debug

QOrders by
Source Token

order events
w/! hydrated source token

Warehouse Refinery

Tools

Analytics

“--.._]| Dashboard
1 Performance

Source of Truth
Transactions

External API

Attrioution Rules

Billing Files

Transactio

Export .

. ®

Direct
Merchants

v N

Order Events w/

b >
<Order API

Y
e]

Source of Truth
Orders

Comstore —

Derived Latest Order State

—>

order-create FIFO

order-adjust
order-delete

Source of Truth
Orders with
Commission

Analytics

Y.

Gatherer

Ledger
: N
Vet

- up
\

Internal Tools

a Commissionable

Termshee
Config

Attribution
Rules

Dashboaﬁ ‘:
Performan
» &

Events Exports

Invoices B

o &
A Financial Tx
Export
Webhook
&

External API

Learnings from the migration process

e Validate by comparing the full dataset
e Anticipate performance optimizations to account for immutability

e Backfilling even a single field can be painful. Include all the fields you can from the
get-go

e Have arollback strategy if things go south

What did we improve?

Button®

CSV Exports are 8x faster
CX team can view history of how an order is commissioned and adjusted

Aggregation is simpler for data scientists, Excel users, and streaming aggregation
jobs

Data lineage via immutability enabled programmatic detection and correction

Extensions

What may change in the future?

Analytics - additional dimensions

Sales team - different pricing models, more billable events (not just orders)
Updates to billing

Performance - Explore alternative storage engines

Questions?

Button®

How Button Works

Order
Publishers Merchants /
user books a hotel

....... , ,
4. 4.

SX.XX $§12

Commission Commission
Earned Owed

(transaction) (transaction)

