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Some Apache Flink Users
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https://flink.apache.org/poweredby.html
https://sf-2019.flink-forward.org/speakers
https://europe-2019.flink-forward.org/speakers

Apache Flink at €
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Let’s look at building Applications
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Building an Application Today

® [
<

FaaS
N Y,

o
-
<, "
|}

The big trend: Serverless
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Functions as a Service

9 © 2019 Ververica

an event-driven function

» i\

S



Functions as a Service

elastically
scalable
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“lightweight resource footprint”
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Functions as a Service — Handling State in Applications

state often bottlenecked scaling the connections,
consistency by state access & database? request rates, ...
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Functions as a Service — Handling State in Applications
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Hardest part of building your services
architecture is still your data and state-
full services. #serverless does not solve
that for #btw

5:01 AM - 9 Nov 2018

v

Nobody talking about data consistency issues
in stateful microservices and I'm angry about
it.

4:51 PM - 13 Mar 2019
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Storage is the single hardest problem in our
domain. Storage related tradeoffs are
sometimes the hardest tradeoffs to tackle.
Storage decisions often impact every other
design decision. I don't know why we are
acting like it ain't so.

12:57 AM - 12 Jan 2019

v

OMG yes! So much energy being poured into
orchestrating stateless applications. That isn't
*totally* trivial but it's pretty damn close
relative to state and storage. And application
devs too often pretend selecting a RDBMS
means they don't have to worry about state
consistency

Jaana B. Dogan @rakyll

Storage is the single hardest problem in our domain. Storage related tradeoffs are
sometimes the hardest tradeoffs to tackle. Storage decisions often impact every other
design decision. I don't know why we are acting like it ain't so.

4:12 PM - 12 Jan 2019
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Composition of Functions

Not straightforward to build more complex applications

Lack of messaging / composition primitives

L »A»:l—’» Amp
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event-driven
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composable

...that sound like...

Stream
Processing

state management
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The Spectrum of Streaming Data Use Cases

Batch Continuous Data Streaming Event-drive Transactional
Processing Processing Pipelines Analytics n Applications
Applications

more lag time more real time

SQL & Tables DataStream Stateful Functions
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Disclaimer

Stateful Functions is currently a standalone project

https://statefun.io/
https://github.com/ververica/stateful-functions

The Apache Flink community has voted to adopt

The project is still new and dynamic.
A good time to get involved to get traction ;-)

© 2019 Ververica

&


https://statefun.io/
https://github.com/ververica/stateful-functions

Stateful Functions

event
ingress

event
egress
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Stateful Functions
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Event ingresses supply events that trigger functions
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Stateful Functions

event
Ingress

event
egress
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Multiple functions send event to each other
Arbitrary addressing, no restriction to DAG
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Stateful Functions

event
ingress

event
egress
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Stateful Functions

event
ingress ‘\\
snapsho
state
event
egress

State and messaging are consistent
with exactly-once semantics
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Stateful Functions

event
ingress

event
egress

22 © 2019 Ververica

ol

-

snapsho

state

No database required
All persistence goes directly to blob storage
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Stateful Functions

mass storage
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Event egresses to respond via event streams

23 © 2019 Ververica

&



Logical/Virtual Instances

memory

secondary
storage

Shard 1
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function virtual instance

Shard 2
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Logical/Virtual Instances

Shard 1
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SDK Concepts

 Each function is associated with a FunctionType and id
e FunctionType + id = Address

* An Address is logical not physical
* No service discovery required

FunctionType = Creeter
id = User Id
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SDK Concepts

GreetRouter Router<GreetRequest> {

@Override
void route(GreetRequest message, Downstream<GreetRequest> downstream) {
Address address = new Address(GreetFunction. TYPE, message.getUserld());

downstream.forward(address, message);

27 © 2019 Ververica

&



SDK Concepts

28

* Applications are bundles of StatefulFunction’s

* Astateful function reacts to incoming events and can:

* Perform a local computation

* Access & modify local state

* Send a message to any other stateful function
* Send a message to external systems

* Send a message with delay

» Complete an asynchronous request

© 2019 Ververica
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SDK Concepts

GreeterFunction StatefulFunction {

FunctionType TYPE = new FunctionType("ververica", "greeter");

@Persisted
PersistedValue<Integer> seenCount = PersistedValue.of("seen", Integer.class);

@Override
void invoke(Context ctx, Object message) {
String userld = ctx.self().id();
int seen = seenCount.getOrDefault(0) + 1;
seenCount.set(seen);

String greeting = createGreeting(userld, seen);
ctx.send(ldentifier.greetings, greeting)
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SDK Concepts
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GreeterFunction StatefulFunction {

public static FunctionType TYPE = new FunctionType("ververica", "greeter");

@Persisted
PersistedValue<Integer> seenCount = PersistedValue.of("seen", Integer.class);

@Override
void invoke(Context ctx, Object message) {
String userld = ctx.self().id();
int seen = seenCount.getOrDefault(0) + 1;
seenCount.set(seen);

String greeting = createGreeting(userld, seen);
ctx.send(ldentifier.greetings, greeting)

© 2019 Ververica

&



SDK Concepts

GreeterFunction StatefulFunction {
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SDK Concepts

GreeterFunction StatefulFunction {
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SDK Concepts

GreeterFunction StatefulFunction {

FunctionType TYPE = new FunctionType("ververica", "greeter");

@Persisted
PersistedValue<Integer> seenCount = PersistedValue.of("seen", Integer.class);
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Execution Model

 There is a single (logical) instance of a function per Address
Each StatefulFunction is created on demand, transparently by the runtime
* Messages sent to an Address are processed by a single thread

Messages sent from function Ato function By are always received in FIFO

order
~
O —
- userf
‘ ' = function
- ;-
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Apache Flink is the State and Event Streaming Fabric
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A Peek Under The Hood

Functions
(Class + Singleton Instance)

(6) send produced
messages to
feedback operator

/ sink

function

<<

(1) extract
target function

type

Events

Function State
(in Flink State Backend)
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Example: Ride Sharing App

Driver status
updates

Passenger
ride requests
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Stream
Processing

Sreaoung -

data preparation
combining knowledge/information

filtering, enriching,
aggregating, joining events
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Stateful Functions

state-centri

coordination,
(interacting) state machines

complex event/state
interactions

F-a-a-
S

stateless /
compute-centric

“occasional” actions or

spiky loads

compute-intensive
or blocking
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Putting it all together: Ridesharing again

Stream Processing

traffic models
demand forecast & pricing

Driver position updates

Passenger
updates i
f(a,b)

74 A\
Driver status updates = \ —

f(a , b) Y f (a b)

Stateful Functions

ride life-cycle
driver-to-ride matching
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Billing

FaaS

render map/route image
create a receipt PDF
send email
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THANKYOU!

www.statefun.io
@statefun_io
github.com/ververica/stateful-functions



