Leveraging Stateful Functions to Power the Next
Generation of Event-Driven Applications

Seth Wiesman
@sjwiesman on most platforms

$ ververica

© 2019 Ververica

About Ververica

Original creators of
Apache Flink®

2 © 2019 Ververica

Enterprise
Stream Processing

&

Stateful Computations over Data Streams

Event-driven Streaming Stream & Batch
Applications Pipelines Analytics
Transactions ~ Realtime) (
» Events o - Application
s - (WD @ é@

10T

Clicks - ﬁ —_

é Database,
@ - ﬁ File System,

-

v

v

_/ Database, KV-Store
File System, Resources | Storage
KV-Store (K8s, Yarn, Mesos, ...) | (HDFS, S3, NFS, ...)
& Y

3 © 2019 Ververica

S

Some Apache Flink Users

[Q\airbnb @ AIRBUS €L aws BetterCloud bol.com” bouygues o @

DEFENCE & SPACE Alibaba Group =~

Capita/l()ne|® CO/\/\%AST C ri teol.. @ DEALEMC O DiDi eb > \V4 ERICSSON Z

JOHNDEERE

oldman m

®gojek S g INGR) WA ASkaviyo | OF
HUAWEI RFE

NETFLIX ~ oppo M4 ® JRazorpay 0%~ splunk>

Sl:l'ipe “Jelefonica Tencent iif @ theTradeDesk Uber Woﬂ}w m \7k

Xlaomi.com

Sources: Powered by Flink, Speakers — Flink Forward San Francisco 2019, Speakers — Flink Forward Europe 2019

4 © 2019 Ververica @

https://flink.apache.org/poweredby.html
https://sf-2019.flink-forward.org/speakers
https://europe-2019.flink-forward.org/speakers

Apache Flink at €

Alibaba Group

The "Singles Day" (11/11/2018)

machines queries throughput latency state size

Ccmo 0o o) _—
=om 10K s 10K ‘4/\. 1.7B @ Sub-Second 100TB

events / sec

5 © 2019 Ververica

&

Let’s look at building Applications

- m— N
*, . =
*
MR
|}

Building an Application Today

&

Building an Application Today

® [
<

FaaS
N Y,

o
-
<, "
|}

The big trend: Serverless

8 © 2019 Ververica

&

Functions as a Service

9 © 2019 Ververica

an event-driven function

» i\

S

Functions as a Service

elastically
scalable

10 © 2019 Verver ica

“lightweight resource footprint”

AEp AR B\
A AN A

&

Functions as a Service — Handling State in Applications

state often bottlenecked scaling the connections,
consistency by state access & database? request rates, ...
? /0

M

AE) By AE) B\
A A B AN A

1 © 2019 Ververica

S

Functions as a Service — Handling State in Applications

12

mv

Hardest part of building your services
architecture is still your data and state-
full services. #serverless does not solve
that for #btw

5:01 AM - 9 Nov 2018

v

Nobody talking about data consistency issues
in stateful microservices and I'm angry about
it.

4:51 PM - 13 Mar 2019

© 2019 Ververica

mv

Storage is the single hardest problem in our
domain. Storage related tradeoffs are
sometimes the hardest tradeoffs to tackle.
Storage decisions often impact every other
design decision. I don't know why we are
acting like it ain't so.

12:57 AM - 12 Jan 2019

v

OMG yes! So much energy being poured into
orchestrating stateless applications. That isn't
totally trivial but it's pretty damn close
relative to state and storage. And application
devs too often pretend selecting a RDBMS
means they don't have to worry about state
consistency

Jaana B. Dogan @rakyll

Storage is the single hardest problem in our domain. Storage related tradeoffs are
sometimes the hardest tradeoffs to tackle. Storage decisions often impact every other
design decision. I don't know why we are acting like it ain't so.

4:12 PM - 12 Jan 2019

&

Composition of Functions

Not straightforward to build more complex applications

Lack of messaging / composition primitives

L »A»:l—’» Amp

13 © 2019 Verver ica

&

14

event-driven

© 2019 Ververica

composable

...that sound like...

Stream
Processing

state management

&

The Spectrum of Streaming Data Use Cases

Batch Continuous Data Streaming Event-drive Transactional
Processing Processing Pipelines Analytics n Applications
Applications

more lag time more real time

SQL & Tables DataStream Stateful Functions

15 © 2019 Ververica

&

Disclaimer

Stateful Functions is currently a standalone project

https://statefun.io/
https://github.com/ververica/stateful-functions

The Apache Flink community has voted to adopt

The project is still new and dynamic.
A good time to get involved to get traction ;-)

© 2019 Ververica

&

https://statefun.io/
https://github.com/ververica/stateful-functions

Stateful Functions

event
ingress

event
egress

17 © 2019 Ververica

mass storage
\ (S3, GCF, ECS HDFS,

snapsho

state

S

Stateful Functions

event

» ‘—

event
egress

=
f(a,b)
N
f(a, b) fa b)
- = »/
f(a,b)

TP

f(a, b) mass storage
(S3, GCF, ECS, HDFS,
\\\ snapsho -)
state
f(a, b)

Event ingresses supply events that trigger functions

18 © 2019 Ververica

&

Stateful Functions

event
Ingress

event
egress

19 © 2019 Ververica

o

snapsho

state

Multiple functions send event to each other
Arbitrary addressing, no restriction to DAG

mass storage

(S3, GCF, ECS, HDFS,

)

&

Stateful Functions

event
ingress

event
egress

20 © 2019 Ververica

f

snapsho
t
state

Functions have locally embedded state

Fp
_— ol

mass storage
(S3, GCF, ECS, HDFS,
..)

S

Stateful Functions

event
ingress ‘\\
snapsho
state
event
egress

State and messaging are consistent
with exactly-once semantics

21 © 2019 Ververica

mass storage

(S3, GCF, ECS, HDFS,

)

S

Stateful Functions

event
ingress

event
egress

22 © 2019 Ververica

ol

-

snapsho

state

No database required
All persistence goes directly to blob storage

mass storage
(S3, GCF, ECS, HDFS,
)

&

Stateful Functions

mass storage
\ (S3, GCF, ECS HDFS,

event
ingress / /:/

N snapsho
state
« I -
event
egress

Event egresses to respond via event streams

23 © 2019 Ververica

&

Logical/Virtual Instances

memory

secondary
storage

Shard 1

24 © 2019 Ververica

function virtual instance

Shard 2

S

Logical/Virtual Instances

Shard 1

25 © 2019 Ververica

message to

K.1nvoke (message)

possibly evict
other

Shard 2

S

SDK Concepts

 Each function is associated with a FunctionType and id
e FunctionType + id = Address

* An Address is logical not physical
* No service discovery required

FunctionType = Creeter
id = User Id

26 © 2019 Ververica

&

SDK Concepts

GreetRouter Router<GreetRequest> {

@Override
void route(GreetRequest message, Downstream<GreetRequest> downstream) {
Address address = new Address(GreetFunction. TYPE, message.getUserld());

downstream.forward(address, message);

27 © 2019 Ververica

&

SDK Concepts

28

* Applications are bundles of StatefulFunction’s

* Astateful function reacts to incoming events and can:

* Perform a local computation

* Access & modify local state

* Send a message to any other stateful function
* Send a message to external systems

* Send a message with delay

» Complete an asynchronous request

© 2019 Ververica

S

SDK Concepts

GreeterFunction StatefulFunction {

FunctionType TYPE = new FunctionType("ververica", "greeter");

@Persisted
PersistedValue<Integer> seenCount = PersistedValue.of("seen", Integer.class);

@Override
void invoke(Context ctx, Object message) {
String userld = ctx.self().id();
int seen = seenCount.getOrDefault(0) + 1;
seenCount.set(seen);

String greeting = createGreeting(userld, seen);
ctx.send(ldentifier.greetings, greeting)

29 © 2019 Ververica

&

SDK Concepts

30

GreeterFunction StatefulFunction {

public static FunctionType TYPE = new FunctionType("ververica", "greeter");

@Persisted
PersistedValue<Integer> seenCount = PersistedValue.of("seen", Integer.class);

@Override
void invoke(Context ctx, Object message) {
String userld = ctx.self().id();
int seen = seenCount.getOrDefault(0) + 1;
seenCount.set(seen);

String greeting = createGreeting(userld, seen);
ctx.send(ldentifier.greetings, greeting)

© 2019 Ververica

&

SDK Concepts

GreeterFunction StatefulFunction {

FunctionType TYPE = new FunctionType("ververica", "greeter");

@Persisted
PersistedValue<Integer> seenCount = PersistedValue.of("seen", Integer.class);

@~Override
void invoke(Context ctx, Object message) {
String userld = ctx.self().id();
int seen = seenCount.getOrDefault(0) + 1;
seenCount.set(seen);

String greeting = createGreeting(userld, seen);
ctx.send(ldentifier.greetings, greeting)

31 © 2019 Ververica

&

SDK Concepts

GreeterFunction StatefulFunction {

FunctionType TYPE = new FunctionType("ververica", "greeter");

@Persisted
PersistedValue<Integer> seenCount = PersistedValue.of("seen", Integer.class);

@Override
void invoke(Context ctx, Object message) {
String userld = ctx.self().id();
int seen = seenCount.getOrDefault(0) + 1;
seenCount.set(seen);

String greeting = createGreeting(userld, seen);
ctx.send(ldentifier.greetings, greeting)

32 © 2019 Ververica

&

SDK Concepts

GreeterFunction StatefulFunction {

FunctionType TYPE = new FunctionType("ververica", "greeter");

@Persisted
PersistedValue<Integer> seenCount = PersistedValue.of("seen", Integer.class);

@Override
void invoke(Context ctx, Object message) {
String userld = ctx.self().id();
int seen = seenCount.getOrDefault(0) + 1;
seenCount.set(seen);

String greeting = createGreeting(userld, seen);
ctx.send(ldentifier.greetings, greeting)

33 © 2019 Ververica

&

Execution Model

 There is a single (logical) instance of a function per Address
Each StatefulFunction is created on demand, transparently by the runtime
* Messages sent to an Address are processed by a single thread

Messages sent from function Ato function By are always received in FIFO

order
~
O —
- userf
‘ ' = function
- ;-

34 © 2019 Ververica

S

Apache Flink is the State and Event Streaming Fabric

Ingress
/

Router

Ingress
/

Router

Functio

E
e gress
[J []
o []
[J []

Functio

Egress

ns

Conceptual Dataflow

35 © 2019 Ververica

Ingress
&
Router

Ingress
&
Router

Functic
n Feedback
Dispatc Operator
her

Egress

Egress

Apache Flink Dataflow Graph

&

A Peek Under The Hood

Functions
(Class + Singleton Instance)

(6) send produced
messages to
feedback operator

/ sink

function

<<

(1) extract
target function

type

Events

Function State
(in Flink State Backend)

36 © 2019 Ververica

&

Example: Ride Sharing App

Driver status
updates

Passenger
ride requests

37 © 2019 Ververica

\

free

booked

bidding .l

Geo-

-—
- update cell index

Driver /

bid
lookup
Inform /

-
book -
Ride
.I y’ seeking
Pass- %
enger confirme
riding d

Ride
status update

&

Stream
Processing

Sreaoung -

data preparation
combining knowledge/information

filtering, enriching,
aggregating, joining events

38 © 2019 Ververica

Stateful Functions

state-centri

coordination,
(interacting) state machines

complex event/state
interactions

F-a-a-
S

stateless /
compute-centric

“occasional” actions or

spiky loads

compute-intensive
or blocking

&

Putting it all together: Ridesharing again

Stream Processing

traffic models
demand forecast & pricing

Driver position updates

Passenger
updates i
f(a,b)

74 A\
Driver status updates = \ —

f(a , b) Y f (a b)

Stateful Functions

ride life-cycle
driver-to-ride matching

39 © 2019 Ververica

Billing

FaaS

render map/route image
create a receipt PDF
send email

r-

&

THANKYOU!

www.statefun.io
@statefun_io
github.com/ververica/stateful-functions

