
© 2019 Ververica

Timo Walther
PMC of Apache Flink
Ververica (formerly dataArtisans, now part of Alibaba Group)

Follow me: @twalthr (yes, without the e)

Stream Processing beyond streaming data –
Batch, Streaming, and Applications

© 2019 Ververica

Alternative Talk Titles

"Batch is a special case of streaming"

"What's taking you so long to
merge DataSet and DataStream?"

"If all you have is a Squirrel, everything looks like a stream"

© 2019 Ververica3

About Ververica

Original creators of
Apache Flink®

Enterprise
Stream Processing

© 2019 Ververica4

Ververica Platform

© 2019 Ververica

Flink 101

© 2019 Ververica6

Some Apache Flink Users

Sources: Powered by Flink, Speakers – Flink Forward San Francisco 2019, Speakers – Flink Forward Europe 2019

https://flink.apache.org/poweredby.html
https://sf-2019.flink-forward.org/speakers
https://europe-2019.flink-forward.org/speakers

© 2019 Ververica

1.7B10K 10K Sub-
Second 100TB

machines queries throughput latency state size

events / sec

Stream Processing with
Apache Flink at Alibaba

The "Singles Day“ (11/11)

© 2019 Ververica

Stateful Computations over Data Streams
Apache Flink

© 2019 Ververica

more lag time

Batch
Processing

Continuous
Processing

Event-driven
Applications

Transactional
Applications

more real time

Data
Pipelines

Streaming
Analytics

The Flink Vision

And building the first open source system to cover that spectrum

Unifying data processing based on thinking in data streams

© 2019 Ververica10

Everything is a Stream

Streams Of Records in a Log or MQ
[e.g., Apache Kafka or AWS Kinesis …]

© 2019 Ververica11

Everything is a Stream

Stream of Requests/Responses to/from Services

Service

DB

à event sourcing architecture

GET /a/b POST /b/c PUT /e/f 200 404 200 200 403

© 2019 Ververica12

Everything is a Stream

Stream of Rows in a Table or in Files

2016-3-1
12:00 am

2016-3-1
1:00 am

2016-3-1
2:00 am

2016-3-11
11:00pm

2016-3-12
12:00am

2016-3-12
1:00am

2016-3-11
10:00pm

2016-3-12
2:00am

2016-3-12
3:00am…

© 2019 Ververica13

Everything is a Stream

Stream of Rows in a Table or in Files

2016-3-1
12:00 am

2016-3-1
1:00 am

2016-3-1
2:00 am

2016-3-11
11:00pm

2016-3-12
12:00am

2016-3-12
1:00am

2016-3-11
10:00pm

2016-3-12
2:00am

2016-3-12
3:00am…

a batch

© 2019 Ververica14

Everything is a Stream

Streams may span storage systems

2016-3-1
12:00 am

2016-3-1
1:00 am

2016-3-1
2:00 am

2016-3-11
11:00pm

2016-3-11
10:00pm…

Parquet files Avro records

more distant past
(e.g., compressed files in DFS/Object Store)

recent past
(e.g., events in MQ/Log)

Easy way to bootstrap an application with past data and
then let it continue with real time data

© 2019 Ververica

APIs

© 2019 Ververica16

APIs to Support these Use Cases

Internal Stream API

Runtime

DataSet
(deprecated)

DataStream Table / SQL

Applications
(physical)

Analytics
(declarative, logical)

© 2019 Ververica17

DataStream API (Functional Java / Scala)

Source

Transformation

Windowed Transformation

Sink

val lines: DataStream[String] = env.addSource(new FlinkKafkaConsumer011(…))

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum(new MyAggregationFunction())

stats.addSink(new StreamingFileSink(path))

© 2019 Ververica18

DataStream API Process Functions

18

© 2019 Ververica19

SQL / Table API – Batch style (fix data set as input)

SQL

Query

Batch Query
Execution

SELECT
room,
TUMBLE_END(rowtime, INTERVAL '1' HOUR),
AVG(temperature)

FROM
sensors

GROUP BY
TUMBLE(rowtime, INTERVAL '1' HOUR), room

Full TPC-H support in

Flink 1.9 with Blink query engine

Full TPC-DS support

targeted for Flink 1.10

© 2019 Ververica20

SQL / Table API – Streaming Data Case

SELECT
room,
TUMBLE_END(rowtime, INTERVAL '1' HOUR),
AVG(temperature)

FROM
sensors

GROUP BY
TUMBLE(rowtime, INTERVAL '1' HOUR), room

SQL
Query

Interpret Stream
as Table

Incremental
Query Execution output result

changes as stream

update database
with changes

© 2019 Ververica21

SQL / Table API – Temporal Joins Example

SELECT tf.time
tf.price * rh.rate as conv_fare

FROM taxiFare AS tf

LATERAL TABLE (Rates(tf.time)) AS rh

WHERE tf.currency = rh.currency;

© 2019 Ververica22

SQL / Table API – Event Pattern Matching Example

© 2019 Ververica

The Relationship between
Batch and Streaming

© 2019 Ververica24

Batch Processing is a special case of Stream Processing

A batch is just a bounded stream.

That is about 60% of the truth…

© 2019 Ververica25

The remaining 40% of the truth

The (Event-time) Watermark

… never seen this in
Batch Processing,
though.

© 2019 Ververica26

The remaining 40% of the truth

Continuous
Streaming

Batch
Processing

Data is incomplete

Latency SLAs

Completeness and
Latency is a tradeoff

Data is as complete
as it gets within the job

No Low Latency SLAs

© 2019 Ververica27

Stream Real-time Processing

older more recent

watermark

unprocessed

© 2019 Ververica28

Stream Re-Processing

older more recent

watermark

unprocessed

© 2019 Ververica29

Batch Processing

older more recent

watermark

unprocessed

© 2019 Ververica30

Batch vs. Stream Processing

Continuous
Streaming

Batch
Processing

Watermarks to model
Completeness/Latency tradeoff No Watermarks

Incremental results &
Proc.-Time Timers

Results at end-of-
program only

In-receive-order
ingestion with low parallelism

Massively parallel
out-of-order ingestion

© 2019 Ververica

Fast Batch Runtime in
a Stream Processor

Evolution through the entire stack!

© 2019 Ververica32

Exploiting the Batch Special Case

Planner/Optimizer

Continuous Operators

Streaming
Scheduler Rules

Additional Bounded
Operators
Additional

Scheduling Strategies

if (bounded && non-incremental)

activates additional
optimizer choices

Core operators,
cover all cases

Optimized operators
for subset of cases

© 2019 Ververica33

Fault tolerance without writing intermediate
streams to Brokers or DFS

© 2019 Ververica34

Scheduling Strategies

•Build pipelined regions
– Incremental results: everything pipelines
– Non-incremental results: break pipelines once in a while

•Recovery: Restart the pipelined region from latest checkpoint (or beginning)
– replay input since checkpoint or beginning

✘✘

© 2019 Ververica35

Streaming versus Batch Join

© 2019 Ververica36

Streaming versus Batch Join
2x RocksDB
LSM-Trees 1x Hybrid Hash Join

bounded/
unbounded

incremental
results

only on
bounded data

batch results

no checkpoints

order-of-magnitude fastermore general

© 2019 Ververica37

Streaming versus Batch Join

push-based
(latency/checkpoints)

pull-based
(data flow control)

order-of-magnitude fastermore general

© 2019 Ververica38

Push-based and Pull-based Operators

accept data from any input immediately
(like actor messages)

minimize latency
supports checkpoint alignment

pull data from one input at a time
(like reading streams)

control over data flow,
high-latency, breaks checkpoints

pull() pull()

Push Operators Pull Operators

© 2019 Ververica39

Flink 1.9 - Selectable Push-based Operators

subscribe to inputs (select)
and receive pushed events

è Operators control data flow by selecting active data paths
è Among active data paths, fully asynchronous data flow

driven by network, data sources (and timers)

similar to non-blocking-I/O model

Java NIO, Linux Epoll, or Select
select() select()

© 2019 Ververica

The State of the
Batch & Streaming Interplay in Flink

© 2019 Ververica42

Table API / SQL in Flink 1.9

Table API / SQL

Flink Query Processor

Flink Task Runtime

DataSet StreamTransformation

Driver
(Pull)

StreamOperator
(selectable push)

Blink Query Processor

batch env. stream env. batch & stream

© 2019 Ververica43

DataStream API

•DataStream is already supporting Bounded and Unbounded Streams

•Not exploiting batch optimizations so far
– Bounded batch-style execution still faster on DataSet API

•After Flink 1.10:
– Introduce BoundedDataStream and non-incremental mode to exploit

optimizations for bounded data
– Watermarks "jump" from -∞ to +∞ at end of program
– Processing time timers deactivated or deferred (end of key)
– ´Add same operators back batch-style SQL execution also for DataStream.

© 2019 Ververica

Wrapping Up

© 2019 Ververica45

Preview of new Blink SQL Engine

Python Table API
Hive support

…and lot's more

Analytics over Checkpoints/Savepoints

Atomic stop-with-savepoint

What else is new in Flink 1.9

© 2019 Ververica46

Cross-Batch-Streaming
Machine Learning

Unaligned Checkpoints

Python Table UDFs

…and lot's more
Interactive multi-job programs

a big documentation overhaul

What else is the community working on?

New Source and
Connector API

DDL and Clients for
Streaming SQL

Full support of Blink SQL Engine
and TPC-DS coverage

© 2019 Ververica47

Learn more about Flink

© 2019 Ververica48

Or another conference?

© 2019 Ververica49

Thank you!

If you liked this, engage with the
Apache Flink® community

• Try Flink and help us improve it
• Contribute docs, code, tutorials
• Share your use cases and ideas
• Join a Flink Meetup
• Come to Flink Forward (https://www.flink-forward.org/)

@twalthr @ApacheFlink @VervericaData

https://flink.apache.org/

