Stream Processing beyond streaming data —
Batch, Streaming, and Applications

Timo Walther
PMC of Apache Flink
Ververica (formerly dataArtisans, now part of Alibaba Group)

Follow me: @twalthr (yes, without the e)

$ ververica

© 2019 Ververica

Alternative Talk Titles

"Batch is a special case of streaming"

"If all you have is a Squirrel, everything looks like a stream”

"What's taking you so long to
merge DataSet and DataStream?”

© 2019 Ververica

©

About Ververica

Original creators of
Apache Flink®

3 © 2019 Ververica

Enterprise

Stream Processing

©

Ververica Platform

S

p
~ N\ [~
"ﬂ Streaming| VERVERICA j
i “L Ledger PLATFORM Logging
Application |:||:|
Mangager [l Metrics
Application :
Lifecycle Apache Flink®
M t
SR Stateful Stream
Processing Cl/CD
. v \ J \,
Resource Kubernetes
Management Container Platform

4 © 2019 Ververica

©

Flink 101

Some Apache Flink Users

[Q\airbnb @ AIRBUS €

DEFENCE & SPACE Alibaba Group

A/}

COMCAST criteol.. @ DALEMC

JOHN DEERE

VG ING [

® W

Pinterest SK ’t'elecom Splunk5 Stripe

Uber W@ ay.

Sources: Powered by Flink, Speakers — Flink Forward San Francisco 2019, Speakers — Flink Forward Europe 2019

-

BetterCloud CapitalOne

O DiDi

MediaMath

ebay

ERICSSON Z

YR NETFLIX oppo

Yelefonica () theTradeDesk

Tenceni B

6 © 2019 Ververica

OVH.com

©

https://flink.apache.org/poweredby.html
https://sf-2019.flink-forward.org/speakers
https://europe-2019.flink-forward.org/speakers

machines

© 2019V

erverica

Stream Processing with
Apache Flink at Alibaba

The "Singles Day“ (11/11)

qgueries throughput latency

OOCC))OO SUb‘
0K |4/\. 178 @ cecond

events / sec

state size

©

Apache Flink

Stateful Computations over Data Streams

Event-driven Streaming Stream & Batch
Applications Pipelines Analytics
Transactions ~ (Real-time) (
> Events
oo o (HEDD—

10T

Clicks e ﬁ —

_/ Database,

_’ 1
- Application
@ é-

\ — _ Event Log

é Database,
@ - ﬁ File System,

KV-Store
File System, Resources | Storage
KV-Store (K8s, Yarn, Mesos, ...) | (HDFS, S3, NFS, ...)
_ J

© 2019 Ververica

%

The Flink Vision

Batch Continuous Data Streaming Event-driven Transactional
Processing Processing Pipelines Analytics Applications Applications

more lag time more real time

Unifying data processing based on thinking in data streams

And building the first open source system to cover that spectrum

© 2019 Ververica

©

Everything is a Stream

Streams Of Records in a Log or MQ
[e.g., Apache Kafka or AWS Kinesis ...]

GETITETYITITNTTTTNTENTINTH
COINITTITI TN NTTNTTINTITENITN

10 © 2019 Ververica

S

Everything is a Stream

Stream of Requests/Responses to/from Services

servic

-

— event sourcing architecture

11 © 2019 Ververica

©

Everything is a Stream

Stream of Rows in a Table or in Files

2016-3-1 2016-3-1 2016-3-1
12:00 am 1:00 am 2:00 am

2016-3-11 2016-3-11 2016-3-12 2016-3-12 2016-3-12 2016-3-12
10:00pm 11:00pm 12:00am 1:00am 2:00am 3:00am

12 © 2019 Ververica

©

Everything is a Stream

Stream of Rows in a Table or in Files
2016-3-1 2016-3-1 2016-3-1 2016-3-11 2016-3-11 2016-3-12 2016-3-12 2016-3-12 2016-3-12
12:00 am 1:00 am 2:00 am 10:00pm 11:00pm 12:00am 1:00am 2:00am 3:00am
[7 [7 [7 [7 [7 [7 [7 [/ [/

a batch

13 © 2019 Ververica

S

Everything is a Stream

Streams may span storage systems

Parquet files Avro records
m
12:00 am 1:00 am 2:00 am 10:00pm 11:00pm
[/ [/ [/ [/ [/
J \ Y
more distant past recent past
(e.g., compressed files in DFS/Object Store) (e.g., events in MQ/Log)

Easy way to bootstrap an application with past data and
then let it continue with real time data

14 © 2019 Ververica

©

APls

APIls to Support these Use Cases

Applications
(physical)

16 © 2019 Ververica

Analytics
(declarative, logical)

l

Table / SQL

©

DataStream API (Functional Java / Scala)

17

val lines: DataStream[String]

env.addSource(new FlinkKafkaConsumer9ll(..)) :}-

val events: DataStream[Event] lines.map((line) => parse(line)) :}_
val stats: DataStream[Statistic] = stream 7
.keyBy("sensor")
.timeWindow(Time.seconds(5)) —
.sum(new MyAggregationFunction())

stats.addSink(new StreamingFileSink(path)) :}_

© 2019 Ververica

Source

Transformation

Windowed Transformation

Sink

©

DataStream API| Process Functions

public void processElementl (Transaction txn, Context ctx, Collector<Transaction> out) {
// keep the transaction in the internal state until the approval comes

pendingTransaction.update (txn) ;
// schedule a timer to trigger the timeout

ctx.timerService () .registerProcessingTimeTimer (txn.getTimestamp() + TIMEOUT MILLIS) ;

public void processElement? (ApproveOrReject approval, Context ctx, Collector<Transaction> out)
// get and remove the transaction from the state

Transaction txn = pendingTransaction.value() ;

pendingTransaction.clear() ;

// forward the transaction to the main stream

out.collect (txn) ;

public void onTimer (long timestamp, OnTimerContext ctx, Collector<Transaction> out) ({

// check if the transaction is still there,

in which case it would be timed out

Transaction txn = pendingTransaction.value() ;

if (txn '= null) {
// write to the timeout stream
ctx.output (TIMEOUT STREAM, txn);
pendingTransaction.clear () ;

18 |@H

{

©

SQL / Table APl — Batch style (fix data set as input)

19

© 2019 Ververica

. .
» oy ¥
Query
Batch Query Full TPC-H support in
Execution Flink 1.9 with Blink query engine
SELECT Full TPC-DS support
room, targeted for Flink 1.10
TUMBLE_END(rowtime, INTERVAL '1' HOUR),
AVG(temperature)
FROM
sensors
GROUP BY

TUMBLE(rowtime, INTERVAL '1' HOUR), room

S

SQL / Table APl — Streaming Data Case

20

© 2019 Ververica

update database
with changes

N SOL mmmn P
» » o @
Interpret Stream Incremental
as Table Query Execution output result
changes as stream

SELECT
room,
TUMBLE_END(rowtime, INTERVAL '1' HOUR),
AVG(temperature)

FROM
sensors

GROUP BY

TUMBLE(rowtime, INTERVAL '1' HOUR), room

©

SQL / Table APl — Temporal Joins Example

21

© 2019 Ververica

o o

Taxi Fare
time | price | currency
10:15 2 EUR
10:30 1 usp
10:32 50 YEN
10:52 3 EUR
11:04 5 uso

R

Conversion Rate

time | currency | rate
09:00 usD 102
N 09:00 EUR 114
09:00 YEN 1
10:45 EUR 116
11:04 usD 105

SELECT tf.time
tf.price * rh.rate as conv_fare

FROM taxiFare AS tf

=

Converted Taxi Fare

time | conv_fare
10:15 228
10:30 102
10:32 50
10:52 348
11:04 525

LATERAL TABLE (Rates(tf.time)) AS rh

WHERE tf.currency = rh.currency;

©

SQL / Table APl — Event Pattern Matching Example

SELECT rideld, timeDiff(startT, endT) / 60000 AS durationMin
FROM Rides
MATCH_RECOGNIZE (
PARTITION BY rideld
ORDER BY rideTime
MEASURES
S.rideTime AS startT,
E.rideTime AS endT
AFTER MATCH SKIP PAST LAST ROW
PATTERN (S E)
DEFINE
S AS S.isStart,
E AS NOT E.isStart

e

22 © 2019 Ververica

S

The Relationship between
Batch and Streaming

Batch Processing is a special case of Stream Processing

A batch is just a bounded stream.

<«— bounded stream > | < bounded stream ———»

| start of @ =—mmmmmm—————————- past n¢w future ======—ccccccccccmmmmcmm e m -

I the stream :

, €+—— unbounded stream

|
|
|
, <+—— unbounded stream

That is about 60% of the truth...

24 © 2019 Ververica

©

The remaining 40% of the truth

25 © 2019 Verver ica

... hever seen this in
Batch Processing,
though.

S

The remaining 40% of the truth

Data is incomplete Data is as complete

as it gets within the job
Latency SLAs

Completeness and

j No Low Lat SLA
Latency is a tradeoff O Low Latency SLAs

©

26 © 2019 Ververica

Stream Real-time Processing

unprocessed

Al

watermark

(

(

27 © 2019 Ververica

S

Stream Re-Processing

unprocessed

Al

watermark

(I

(

28 © 2019 Ververica

©

Batch Processing

unprocessed

Al

watermark

(

(

29 © 2019 Ververica

©

Batch vs. Stream Processing

Watermarks to model
Completeness/Latency tradeoff

Incremental results &
Proc.-Time Timers

In-receive-order
ingestion with low parallelism

30 © 2019 Ververica

No Watermarks

Results at end-of-
program only

Massively parallel
out-of-order ingestion

©

Fast Batch Runtime in
a Stream Processor

Evolution through the entire stack!

Exploiting the Batch Special Case

activates additional
optimizer choices

Planner/Optimizer » if (bounded && non-incremental)

P >

Streaming Additional
Scheduler Rules Scheduling Strategies
Core operators, Optimized operators
cover all cases for subset of cases

32 © 2019 Ververica

©

Fault tolerance without writing intermediate
streams to Brokers or DFS

C—C—C\

33 © 2019 Ververica

[r r 1
%

Scheduling Strategies

* Build pipelined regions
— Incremental results: everything pipelines
— Non-incremental results: break pipelines once in a while

* Recovery: Restart the pipelined region from latest checkpoint (or beginning)
— replay input since checkpoint or beginning

I 1 1
34 | ©2019Ververicd===="""=77"--mTToomsssso-moo-mo---o----ol demm e

©

Streaming versus Batch Join

35

© 2019 Ververica

both inputs:
- build one table
- probe other table

Continuous Streaming Join

|

1st input:
build table

2nd jnput:

probe table

Batch Hash Join

S

Streaming versus Batch Join

2x RocksDB

LSM-Trees
\

bounded/
unbounded

incremental both inputs:

- build one table
results - probe other table

Continuous Streaming Join

more general

36 © 2019 Ververica

1x Hybrid Hash Join

/
]
= only on
O bounded data
T 2nd jnput:
1t input: probe table batch results
build table

no checkpoints
Batch Hash Join

order-of-magnitude faster
N

Streaming versus Batch Join

push-based both inputs:

. - build one table
(latency/checkpoints) - probe other table

Continuous Streaming Join

more general

37 © 2019 Ververica

[]
L]
L]
L]
T 2nd jnput:
. probe table
1st input:
build table pull-based

(data flow control)

Batch Hash Join

order-of-magnitude faster
N

Push-based and Pull-based Operators

Push Operators

accept data from any input immediately
(like actor messages)

minimize latency
supports checkpoint alignment
38 © 2019 Ververica

Pull Operators
O

\

pUll() pUll()

pull data from one input at a time
(like reading streams)

control over data flow,
high-latency, breaks checkpoints

©

Flink 1.9 - Selectable Push-based Operators

similar to non-blocking-1/O model

Java NIO, Linux Epoll, or Select
select() select()

subscribe to inputs (select)
and receive pushed events

=» Operators control data flow by selecting active data paths
=» Among active data paths, fully asynchronous data flow
driven by network, data sources (and timers)

©

39 © 2019 Ververica

The State of the
Batch & Streaming Interplay in Flink

Table AP/ SQL in Flink 1.9

Flink Query Processor Blink Query Processor

batch env. stream env. batch & stream

42 © 2019 Ververica

S

DataStream API

e DataStream is already supporting Bounded and Unbounded Streams

* Not exploiting batch optimizations so far
— Bounded batch-style execution still faster on DataSet API

e After Flink 1.10:

— Introduce BoundedDataStreamand non-incremental mode to exploit
optimizations for bounded data

— Watermarks "jump" from -eo to +e° at end of program
— Processing time timers deactivated or deferred (end of key)
— "Add same operators back batch-style SQL execution also for DataStream.

43 © 2019 Ververica

©

Wrapping Up

What else is new in Flink 1.9

Python Table API
Hive support

Analytics over Checkpoints/Savepoints

Preview of new Blink SQL Engine

Atomic stop-with-savepoint

...and lot's more

45 © 2019 Ververica

©

What else is the community working on?

Cross-Batch-Streaming Python Table UDFs
Machine Learning

Unaligned Checkpoints

Full support of Blink SQL Engine

and TPC-DS coverage DDL and Clients for

Streaming SQL
New Source and

Connector API
a big documentation overhaul

Interactive multi-job programs
...and lot's more

©

46 | © 2019 Ververica

Learn more about Flink

Learn from the original creators of Apache Flink®

))

Developer Training Operations Training

Barcelona, ES - Oct 21 Barcelona, ES - Oct 24

Register
Organized by & ververica

47 © 2019 Ververica

Or another conference?

The Apache Flink® Conference FLIN K%
Berlin | October 7-9, 2019 Fo RWARD

Organized by § ververica

Use

20% off #flinkforward
flink-forward.org

Thank you!

If you liked this, engage with the
Apache Flink® community

* Try Flink and help us improve it
e Contribute docs, code, tutorials
* Share your use cases and ideas
* Join a Flink Meetup

e Come to Flink Forward (https://www.flink-forward.org/)

@twalthr @ApacheFlink @VervericaData

https://flink.apache.org/
49 © 2019 Verver ica @

